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Abstract: This paper presents a method for dynamic compensation of a load cell response using time-varying
continuous-time filter. The proposed approach is used for the improvement of the response of the model of the
load cell mounted on an elastic foundation. The paper describes a theoretical implementation of the proposed
time-varying filter, and suggests the implementation technique with the aid of which this kind of filter can be
implemented in practice. Simulation results verifying the effectiveness of the proposed filter are presented and
compared to the traditional time-invariant configuration.
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1 Introduction

Load cells are used in many industrial weighing appli-
cations. The settling time of these transducers is long,
and lengthen additionally by reason of the settling
time of the elastic construction of the scale. There-
fore, the weight estimation produced by the load cell
is disturbed by a transient process. Since signal pro-
cessing and control systems cannot operate correctly
if they receive inaccurate input data, compensation of
the imperfections of sensor response is one of the most
important problems in sensor research. Influence of
unwanted signals, nonideal frequency response, pa-
rameter drift, nonlinearity, and cross sensitivity are the
five major defects in primary sensors [1, 2].

Load cells have an oscillatory response which al-
ways needs time to settle down. Dynamic measure-
ment refers to the ascertainment of the final value of a
sensor signal while its output is still in oscillation. It
is, therefore, necessary to determine the value of the
measurand in the fastest time possible to speed up the
process of measurement, which is of particular impor-
tance in some applications. One example of process-
ing that can be done on the sensor output signal is fil-
tering to achieve response correction [2].

In [2], the authors presented a very wide litera-
ture review concerning the problem of the load cell
response correction. This problem has been solved
using a few techniques. Software solutions for sensor
compensation are reviewed in [3]. Analog adaptive
techniques have been used in [2, 4] and digital adap-
tive algorithms have been proposed in [5]. In [6, 7],
the authors demonstrated that an artificial neural net-

work can also be useful for intelligent weighing sys-
tems. Other methods, such as employing a Kalman
filter [8] and nonzero initial condition [9] have also
been applied for dynamic weighing systems.

In this paper, we present a new competitive
method for dynamic compensation of the load cell
response using a time-varying continuous-time filter.
The outline of the paper is as follows. In Section 2,
some aspects of load cell modeling are presented. The
analytical synthesis of the time-varying filter are dis-
cussed in Section 3. Section 4 then presents the results
of simulations carried out with the aid of computer
simulations. The conclusions are presented in Section
5. This paper presents the same concept as in [10] but
for a more complex model of the load cell.

2 Modeling of a scale based on a load
cell

The mathematical model of the scale is a base of a
design and tests of the transient time compensation.
Previous work [5, 10] consider the scale model assum-
ing that the load cell is fixed in the inertial reference
frame. That means the load cell is fixed directly to the
rigid foundation or the mount has an infinite stiffness.
In practice, the assumption is not always fulfilled. The
model of the load cell transducer should take into ac-
count the dynamics of the support construction of the
load cell.

In practice, a scale with a load cell often com-
poses a mechanical system with more than one degree
of freedom. One of the reasons of this property is the
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Figure 1: Scale mounted on elastic foundation.

elasticity of fixation of the scale. For example, the
scale fixed to the elastic support (Fig. 1) or hung on a
gate construction. These systems can be modeled as
one-dimensional two-degree of freedom lumped me-
chanical system with the following parameters: mass
of the measurand mx, mass of the load cell m, mass
of the support ms, elasticity of the load cell k, elas-
ticity of the support ks, attenuation of the load cell b
and attenuation of the support bs. The load cell signal
m̃x(t) fulfills the following system of equations

m+mx

k
¨̃mx(t)+

b

k
˙̃mx(t)+m̃x(t)=mx−m+mx

g
δ̈(t) (1a)

msδ̈(t)+bsδ̇(t)+ksδ(t)=gm̃x(t)+
bg

k
˙̃mx (1b)

where δ(t) is related with deflection of the support.
The initial conditions of the equation describing the
scale (1a) are set on zeros, and the equation of the sup-
port (1b) has both the initial deflection and the initial
deflection velocity equal zero.

The load cell signal m̃x(t) has the following prop-
erty

lim
t→∞ m̃x(t) = mx , (2)

i.e. in the steady-state the load cell signal is equal to
the measurand. The deflection of the support in the
steady state

lim
t→∞

˜δ(t) =
g

ks
mx (3)

is caused by the ”transmitted” load mass.
The equations (1) show that the system consists

of two coupled harmonic oscillators: the scale and the
support with the natural frequency

ωns =

√

ks

ms
, (4)

and the damping ratio

ζs =
bs

2
√

ksmx
. (5)

The coupling between the oscillators elongates
the settling time and causes some resonant effects as
strong amplification of the signal m̃x(t).

The load cell model presented in this paper ex-
hibits an oscillatory character. Sensors in contempo-
rary measurement systems should possess a very short
settling time. Therefore, it is justified to search a tech-
nique for a sensor response improvement.

3 Time-varying filter formulation
The problem of transient improvement was consid-
ered in many fields of engineering. For traditional
time-invariant filters there are only small possibilities
of transient reduction, since the filter parameters are
calculated on the basis of the assumed approximation
method. This fact guarantees that the frequency re-
quirements are satisfied without taking into consid-
eration the characteristic of the transient state. Pre-
vious investigations [11, 12, 13] proved that one can
obtain significant changes of the transient duration by
the variation of the filter passband. This procedure is
related to the change of the value of filter coefficients.

Dynamic properties of the second order lowpass
filter (or filter of constant component) are described
by the damping ratio ζ and the natural frequency ωn.
The transfer function of this filter can be written as
follows:

H(s) =
1

ω−2
n s2 + 2ζω−1

n s + 1
. (6)

It is well known that the higher value of the natural
frequency ωn, the shorter transient of the filter. On
the other hand, the smaller value of the damping ratio
ζ, the smaller rise time of the filter. By changing these
parameters in time, we can improve the dynamics of
the filter and obtain significant reduction of the tran-
sient duration. Hence, we have to do with the time-
varying filter.

The analytical synthesis of the time-varying fil-
ter is the result of modeling the differential equation
which describes the filter in the time domain. For the
purpose of the filter response improvement it was as-
sumed that dynamic parameters of the filter will be
varied in time. Therefore, the model of the filter has
the following form:

1

ω2
n(t)

· y′′(t) +
2ζ(t)

ωn(t)
· y′(t) + y(t) = x(t) (7)

where x(t) and y(t) are respectively the input and out-
put of the filter, ωn(t) is a function of the natural fre-
quency, and ζ(t) is a function of the damping ratio.

As it was discussed above, the larger value of ωn,
the shorter transient. On the other hand, the larger
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value of ζ, the smaller overshoot of the filter. On the
basis of these rules it is easy to guess that for the im-
provement of the dynamics of the filter all above men-
tioned parameters should have larger values in the ini-
tial phase of filter run. Therefore, for the purpose of
the transient reduction, the functions of the filter pa-
rameters have been formulated in the following forms:

ωn(t) = dω · ωn ·
[

1 − dω − 1

dω
· hs(t)

]

, (8)

ζ(t) = dζ · ζ ·
[

1 − dζ − 1

dζ
· hs(t)

]

(9)

where ωn and ζ are the natural frequency and the
damping ratio, which come from the assumed ap-
proximation method. The coefficients dω and dζ are
the variation ranges of the functions ωn(t) and ζ(t).
These parameters are described by the following ra-
tios:

dω =
ωn(0)

ωn
, dζ =

ζ(0)

ζ
. (10)

Functions (8) and (9) can be easily generated in the
analog technique, and this time dependency works
well [11, 12]. The function hs(t) in (8) and (9) de-
scribes the step response of the second order support-
ive system Hs(s) which has the following form:

Hs(s) =
1

r−2s2 + 2δr−1s + 1
. (11)

Therefore, the step response hs(t) of Hs(s) can be
written as follows:

h(t)=L−1

[

1

s
· 1

r−2s2 + 2δr−1s + 1

]

(12)

where L−1 is the inverse Laplace transform, and r and
δ are respectively the natural frequency and damping
ratio of the second order supportive system.

The functions ωn(t) and ζ(t) should not possess
oscillations in their run, so δ = 0.9 was established.
With reference to the functions (8) and (9), the coeffi-
cient δ can be named as the oscillation factor, and r as
the variation rate of the functions ωn(t) and ζ(t).

The main assumption which must be imposed
on the functions ωn(t) and ζ(t) is the necessity of
their settling during the transient of the original time-
invariant filter. This condition can be written as

∀t>tsα ωn(t) = ωn ± α, ∀t>tsα ζ(t) = ζ ± α (13)

where tsα is the settling time (with assumed accuracy
of α) of the original time-invariant filter. Therefore,
the time-varying filter which is to be designed should

possess, after tsα, the same spectral properties as the
traditional time-invariant filter.

Fig. 2 presents a detailed model of the second or-
der time-varying filter which has been discussed in
this paper. A classical implementation of the time–
varying approach described in this paper requires the
use of multipliers, adders, and two additional integra-
tors. As one can notice, the complexity of the overall
system underwent a significant increase. However, in
situations, in which the transient should be as short as
possible this complexity increase may be profitable.
The implementation problems of the described idea
will not be analyzed in this paper. Nevertheless, at the
end of this paper, the implementation technique will
be suggested.

4 Results of simulations
The Bessel filters enjoy the best properties among
all analog continuous-time filters when the passing
through of rectangular impulses is considered. There-
fore, for the purpose of the dynamic correction of the
response of the load cell model, the lowpass Bessel
filter will be used. The simulations which will be
presented are due to show that the time-varying filter
will be always faster that the original time-invariant
one. Therefore, the cutoff frequency of the filter was
arbitrarily chosen at 1 rad/s. Of course, the cutoff
frequency of the time-invariant filter can be selected
more precisely for a given model.

The transfer function of the second order time-
invariant Bessel filter with cutoff frequency ωc = 1
rad/s has the following form:

H(s) =
1

0.6180s2 + 1.3616s + 1
. (14)

After simple computations we can determine the nat-
ural frequency ωn = 1.2720 and the damping ratio
ζ = 0.8660 of this filter.

The optimal values of the functions parameters
which vary the filter coefficients are selected on the
basis of computer simulations because analytical so-
lutions of differential equations with varying coeffi-
cients are impossible to obtain in our case.

For the load cell model, which has been described
in the previous section the following variation ranges
of the functions which vary the filter parameters were
chosen:

dω =
ωn(0)

ωn
= 50, dζ =

ζ(0)

ζ
= 10 (15)

which means that in the initial phase of the filter
work the natural frequency is 50–times greater and the
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Figure 2: Detailed model of the second order time-varying filter.
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damping factor 10–times greater than the ones follow-
ing from the approximation, i.e. when the parameters
are settled.

Figs. 3 and 4 show the load cell outputs and the
compensation filter outputs for the normalized mass
mx = 10 and mx = 15. From these figures we
can notice that the time-varying filter is considerably
faster than the traditional time-invariant one. Adap-
tive techniques [2, 4, 5] are usually useless in the case
of a complex model.
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Figure 3: Simulation result of load cell compensation
using time-varying filter for mx = 10.
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Figure 4: Simulation result of load cell compensation
using time-varying filter for mx = 15.

5 Conclusions
As it has been proven, the introduction of time-
varying coefficients to the filter yields good results.
The proposed filter is able to improve the load cell re-
sponse irrespective of the complication degree of the

model. It seems that further examinations of time-
varying filters with application to the dynamic correc-
tion of sensor response are needed.

In the future, the proposed filter configuration will
be implemented with the aid of the dynamic translin-
ear technique [14]. By using the dynamic translin-
ear principle, it is possible to implement linear and
nonlinear differential equations, using transistors and
capacitors only. Dynamic translinear circuits are ex-
cellently tunable across a wide range of several pa-
rameters, such as cutoff frequency, quality factor and
gain, which increases their designability and makes
them attractive to be used as standard cells or pro-
grammable building blocks. In fact, the dynamic
translinear principle facilitates a direct mapping of
any function, described by differential equations, onto
silicon.

At the end of this paper, it is worth to add that the
proposed filter structures can be easily transformed to
digital filters. For that purpose, the continuous-time
integrators from Fig. 2 should be transformed to their
digital equivalents with the aid of the well known bi-
linear transform.
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