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Abstract: - An algorithm is proposed for processing and analyzing surface electromyography (SEMG) signals 

using wavelet transform and Higher Order Statistics (HOS).  EMG signal acquires noise while travelling 

though different media. Wavelet denoising is performed in this research for initial EMG signal processing. 

With the appropriate choice of the Wavelet Function (WF), it is possible to remove interference noise 

effectively.  Root Mean Square (RMS) difference and Signal to Noise Ratio (SNR) values are calculated to 

determine the most suitable WF. Results show that WF db2 performs denoising best among the other wavelets. 

Power spectrum analysis is performed to the denoised SEMG to indicate changes in muscle contraction. 

Furthermore, HOS method is applied for further efficient processing due to the unique properties of HOS 

applied to random time series. Gaussianity and linearity tests are conducted as part of HOS which shows that 

SEMG signal becomes less gaussian and more linear with increased force. 
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1   Introduction 
The electromyography (EMG) signal gives an 

electrical representation of neuromuscular activation 

associated with a contracting muscle. A muscle is 

composed of many Motor Units (MUs). The 

technique of studying muscle function by using a 

surface electrode is normally known as Surface 

Electromyography (SEMG). EMG signals detected 

directly from the muscle or from the skin by using 

surface electrodes show a train of motor unit action 

potentials (MUAP) and noises. Wavelet-based based 

noise removal is performed in this research prior to 

signal processing and analysis. Wavelet denoising 

(noise removal) has been found effective in 

denoising a number of physiological signals [1, 2, 3, 

4]. It is preferred over notch filters and signal 

frequency domain filtering because it tends to 

preserve signal characteristics even while 

minimizing noise. In this research, daubechies, 

symmlet and orthogonal Meyer Wavelet Functions 

(WFs) are used for the Wavelet transform (WT).  

The best suitable WF is determined by finding the 

Root Mean Square (RMS) difference and Signal to 

Noise Ratio (SNR) values. 

     SEMG signals can be characterized by a power 

spectrum density function because the signal is 

stochastically modelled as a zero mean coloured 

noise. The amplitude of the signal increases due to 

recruitment of MUs with increased muscle force [4, 

5]. SEMG signal analysis can also provide the 

measurement from a muscle through out a sustained 

fatiguing contraction. In this research, mean power 

frequency is considered for the SEMG power 

spectrum analysis during load test to understand 

muscle contraction and determine fatigue. 

     Furthermore, this study exploits the use of Higher 

Order Statistics (HOS) in further efficient SEMG 

signal processing and analysis. HOS method is also 

applied for suppressing gaussian white noise within 

the signal. A fundamental means by which the 

probability theory can describe a random process is 

by means of the different order moments and 

cumulants. The first order moment or cumulant of 

any process indicates the mean of that process. The 

second order moment of that process indicates the 

autocorrelation, while its second order cumulant 

indicates the variance of that process. HOS starts 

from the 3
rd

 order to n
th
 order moment [6]. Along 

with other HOS measures, the bispectrum, a 

frequency-domain measure of third-order cumulants 

has been used in this research for the signal analysis 

to provide information about the signals’ gaussianity 

and linearity. The Gaussianity test and linearity test 

of the normalized bispectrum shows changes in 

muscle contraction. The analysis also determines the 

effectiveness of the wavelet based denoising 

method. 
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     Results in this study show that, wavelet based 

noise removal technique using WF db2 works best 

to remove interference noise from SEMG signals. 

The effectiveness was observed more clearly while 

analyzing the power spectrum properties of the 

SEMG signals. The bispectrum analysis also shows 

that SEMG becomes less gaussian and more linear 

with increased walking speed/force (increase in 

mean voluntary contraction). Moreover, this 

research proves that the power spectrum of EMG 

shows a shift to lower frequencies during fatigue. 

 

 

2   Methodology 
 

 

2.1 Experimental Setup 
Two sets of different SEMG data files were 

considered for the experiment. The first set of 

SEMG signal was recorded from the left “biceps 

brachii” and the second set was recorded from the 

right “rectus femoris” muscle. The sample raw 

SEMG signals were collected from three normal 

subjects aged 22 to 40 at University Kebangsaan 

Malaysia (UKM). All analog channels were 

recorded at 1000 samples per second without any 

filter.  

 

 

2.2 Algorithm Design 
The two main algorithms applied in this research for 

the EMG signal processing and characterization are 

the WT and HOS. 

 
2.1.1   Wavelet Denoising  

Wavelets generally used for denoising biomedical 

signals include the Daubechies ‘db2’, ‘db4’ ‘db5’ 

‘db6’ and ‘db8’ wavelets and orthogonal Meyer 

wavelet. In the case of SEMG, the wavelets are 

generally chosen whose shapes are similar to those 

of the MUAP [3, 7, 8]. 

     Wavelet decomposition: The DWT is computed 

by successive low-pass and high-pass filtering in the 

discrete-time domain. The DWT of a signal x[n] is 

calculated by passing it through a series of filters. 

The outputs give the detail coefficients (from the 

high-pass filter, yhigh[n]) and the approximation 

coefficients (from the low-pass, ylow[n]). The filter 

outputs are then down-sampled as given by 
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respectively. For this research WFs Daubechies 

(db2, db4, db5, db6, db8), Symmlet (sym4, sym5), 

and orthogonal Meyer (dmey) are used for the 

decomposition. Four levels of decomposition is 

considered for the SEMG signals in this experiment 

     Threshold method: A threshold is determined for 

the raw EMG signal which is applied on the wavelet 

decomposition. The thresholding process of the 

wavelet coefficients is illustrated in Fig. 1. 

 

Fig. 1: Thresholding process on wavelet coefficients 

 

     Considering that the contaminated signal f equals 

the raw SEMG signal s plus the noise signal n, i.e. 

f=s+n. The thresholding is performed in following 

steps, where Ts is the signal threshold and Tn is the 

noise threshold [9]: 

1. The energy of the original signal s is 

effectively captured, to a high percentage, 

by transform values whose magnitude are 

all greater than some threshold Ts >0. 

2. The noise signal’s transform values all have 

the magnitudes which lie below some noise 

threshold Tn satisfying Tn < Ts. 

     Then the noise in f can be removed by 

thresholding its transform where all values of the 

transform whose magnitude lies below the noise 

threshold Tn are set equal to 0. This way of 

thresholding is called hard thresholding.  

     Wavelet reconstruction: An inverse transform is 

performed on the coefficients after thresholding, 

providing a good approximation of the EMG signal. 

The reconstruction is the reverse process of wavelet 

decomposition. For this research, four levels of 

wavelet decomposition/reconstruction is applied as 

mentioned earlier. 

 

2.1.2   RMS Difference Calculation 

The RMS difference, R of the contaminated signal 

f[n] compared with the denoised signal s[n] is 

defined by 

N
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where f is the raw SEMG signal and s is the signal 

after denoising. N is the total number of samples 

(length of data). According to equation 3, the higher 

the RMS difference, the better the denoising 

performance of the WF. 
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2.1.3   SNR Calculation 
The SNR is calculated by equation 4. 

(Xn/Xs)10logSNR 10=     (4) 

where, Xn is the variance for the noisy signal, and Xs 

is the variance for the denoised signal. According to 

equation 4, higher the value of (–db), the better the 

performance of the WF. 

 

2.1.4   Higher Order Statistics 
Bispectrum is obtained by the two-dimensional 

discrete Fourier transform of the 3
rd

 order cumulant. 

Knowing the frequency components X(k) and X(l) of 

the output signal x(k), the bispectrum Bx(k,l) can be 

estimated by 

( ) )}(*)()({, lkXlXkXElkBx +=                    (5) 

where E{.} donates the statistical expression, k,l are 

the discrete frequency components and * denotes the 

complex conjugate. 

     Bispectrum Estimation Process: Given a set of 

real observations (here the SEMG signal) {x(n)} for 

n = 0, 1, 2, …. ,N-1, where it is assumed that the 

data set is stationary [10,11, 12]. The algorithm for 

the bispectrum estimation is given in details in fig. 

2. 

 

 

Fig. 2: Flow chart of bispectrum estimation 

 

     A common problem in signal processing is that 

the observed signal consists of a non-gaussian 

stationary signal in additive gaussian noise. Let us 

consider a mixture process which is the sum of two 

processes (gaussian and non-gaussian), as equation 

6, 

)()()( nwnenx +=                (6) 

where, e(n) is non-gaussian zero mean and w(n) is 

the gaussian white noise. Equation 6 can be 

represented in terms of power spectrum, P
x
(k) and 

bispectrum, B
x
(k) through equation 7 and 8 

respectively. 
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where k and l are the frequency components. It is 

noted that bispectrum of a gaussian signal is zero 

and the resulting bispectrum of the modeled mixer 

signal gives the skewness (
e

3γ ) value only. 

Therefore, additive noise has been suppressed in the 

output signal. Therefore, the bispectrum offers 

robustness to additive gaussian white noise. 

     Gaussianity and Linearity Tests: The normalized 

bispectrum gives the bicoherence. Bicoherence is 

the mixed function of the second and third order 

statistics and it is used to quantify the non-

Gaussianity of a random process. Bicoherence, 

Bn(k,l) is estimated by 
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where Bx(k,l) is the bispectrum and P(…) is the 

power spectrum. The test of Gaussianity, Sg is based 

on the mean bicoherence power defined by 

∑= |),(| lkBS ng                (10) 

     The Gaussianity test is mainly the zero-skewness 

test which determines whether or not the estimated 

bicoherence is zero. The linearity test determines 

whether or not the estimated bicoherence is constant 

in the bi- frequency (k, l) domain. It is the 

measurement of the difference (dR) between a 

theoretical and an estimated inter-quartile range R 

[13].  

     Power Spectrum Analysis: The power spectrum 

is obtained by fast Fourier transform (FFT) given in 

equation 12 during the bispectrum estimation 

process. Hanning window is used with a 256 point 

FFT. The mean power frequency pf is obtained by 

equation 11. 

dffPS

dfffPS
pf mean

)(

)(

∫

∫
=                (11)  

where f is the denoised signal and PS is the power 

spectrum. 

 

 

3   Result and Discussion 
Wavelet denoising method is applied to SEMG 

signal at various muscle contraction/force stages 

(rest, light contraction, strong contraction and 

contraction with load for biceps brachii muscle) and 

at various walk styles/force (slow walking style, 

medium walking style, fast walking style, and very 
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fast walking style for rectus femoris muscle). The 

mean power frequency and bispectrum was used to 

analyze the EMG signal to understand the muscle 

force and fatigue.  

     Kumar et. al [14] demonstrated that using 

wavelets, the differences between the EMG 

corresponding to fatigue muscle and non-fatigue 

muscles is highlighted in the power of the wavelet 

coefficients when using WFs symmlet4 (sym4) and 

symmlet5 (sym5). Ren et. al [8] used WF db5 to 

denoise EMG signal in their research. In this 

experiment the appropriate WF for EMG is chosen 

based on the calculated RMS difference and SNR 

values. The raw EMG signals were taken to 

calculate the RMS difference and SNR for the all 

WFs suitable for biomedical signal processing (db2, 

db4, db5, db6, db8, and dmey) including sym4, 

sym5, and db45 with four levels of decomposition. 

Table 1 and table 2 gives the results of the average 

RMS difference of the chosen WFs for the three 

subjects from the “rectus femoris” muscle at various 

contraction levels.  

 

Table 1 : Average RMS differences of various WFs 

 

Table 2 – Average SNR values of various WFs 

 

     According to the results in Table 1, the 

considered WFs show similar kind of performance; 

however the daubechies WFs have higher RMS 

difference compared to WF sym4, sym5, and dmey. 

This means that daubechies (especially db2 from the 

average column in Table 1) WF’s are capable of 

denoising SEMG signals better than other wavelet 

families; symmlet and orthogonal meyer. According 

to Table 2, the SNR values show a similar kind of 

results where the Daubechies WFs show better 

performance compared to the other WFs. But from 

the SNR values it is also observable that WFs db2 

gives the best result.  

     Since WF db2 shows better performance from 

the results, therefore, it is considered for the SEMG 

signal denoising process.  

 

 
 

Fig. 3 gives the sample raw SEMG signal and its 

denoised signal. Figure 3 – Raw SEMG signal and 

denoised SEMG signal at WF db2 at four level of 

decomposition 

 

     According to the study by Hagberg and Ericson, 

mean power frequency is lower at low contraction 

levels when compared with high contraction levels 

[15].  Moritani et al. also obtained similar results 

where significant increase in SEMG amplitude and 

mean power frequency were found with increasing 

force [16]. It is also shown that during muscle 

fatigue, the power spectrum of SEMG shows a shift 

to lower frequencies [3, 17]. Mean/median 

frequency is used to quantify this shift. Fig. 4 shows 

the mean power frequency of SEMG signal for the 

three subjects at the various muscle contraction 

stages using WF db2. Results obtained by this 

research that there was significant increase in the 

mean power frequency with increase of muscle force 

as in [15, 16]. Fatigue was also noticed by observing 

a shift to lower frequencies in the power spectrum as 

in [17]. 

     For this experiment, SEMG signal was captured 

from “rectus femoris” muscle at the following force 

levels/walking styles: slow walk, medium walk, fast 

walk, and very fast walk. Results for a subject at the 

mentioned force level are presented in this paper 

using bispectrum analysis for two cases; a. SEMG 

signal with wavelet denoising, b. without wavelet 

WF/ 

Force Slow Medium Fast V. Fast Avg 

db2 0.023394 0.025761 0.036118 0.035513 0.03019 

db4 0.023216 0.025692 0.035767 0.034624 0.02982 

db5 0.023209 0.025558 0.035648 0.033597 0.02950 

db6 0.023029 0.025532 0.035666 0.033161 0.02934 

db8 0.023024 0.025156 0.036438 0.035398 0.03000 

sym4 0.022986 0.025331 0.03521 0.032953 0.0291 

sym5 0.022983 0.025398 0.033601 0.032748 0.02868 

dmey 0.022282 0.024669 0.033562 0.03215 0.02816 

WF/ 

Force Slow Medium Fast V. Fast Avg 

db2 -3.8504 -2.3722 -1.2662 -1.7506 -2.3098 

db4 -3.2413 -2.3739 -1.288 -1.6904 -2.1484 

db5 -3.7259 -2.3608 -1.2791 -1.5977 -2.2408 

db6 -3.6403 -2.3506 -1.2792 -1.6004 -2.2176 

db8 -3.6132 -2.2804 -1.359 -1.7989 -2.2629 

sym4 -3.6201 -2.302 -1.233 -1.5662 -2.1803 

sym5 -3.6075 -2.2977 -1.1191 -1.5075 -2.1329 

dmey -3.2128 -2.174 -1.1185 -1.5312 -2.0091 
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denoising. The results are obtained from the 

Gaussianity tests of the raw signal using only 

bispectrum, and the signal using bispectrum after the 

noise removal technique. The results for the 

Gaussianity tests are given in Fig. 5 for a subject 

during the walking trial. 
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Figure 4 – Mean power frequency of SEMG signal 

for the three subjects at the various muscle 

contraction stages using WF db2 (biceps brachii) 
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walking trail using HOS only and WT plus HOS 

 

     Bispectrum analysis was also used by Kaplanis 

and Pattichis [13] for analyzing the “Biceps Brachii” 

muscle. It is reported that SEMG becomes less 

Gaussian and more linear on increasing mean 

voluntary contraction (MVC). Other research using 

HOS also showed similar results where SEMG 

becomes less gaussian with increased muscle 

contraction due to load [4, 11, 12]. The results for 

the linearity test for the three subjects are given in 

Fig. 10. 

     According to Fig. 6, it is demonstrated that the 

signals become more linear with increased walk 

speed/muscle force. The linearity tests show same 

pattern as the Gaussianity tests which is the reverse 

pattern for the trial. Results obtained by this research 

explain that the signal becomes less gaussian as in 

[11, 12, 13] and more linear as in [12, 13] with 

increased force. The dotted lines in Fig. 5 represents 

the change of gaussianity for the raw signals 

applying HOS only and the solid lines demonstrated 

the gaussianity for the signal after noise removal 

applying WT and HOS. The raw signal and denoised 

signal show similar characteristics where both 

SEMG signals become less gaussian from “slow” 

walking style to “very fast” walking style. The 

important thing to notice from the Fig. 5 is that, the 

signals after denoising is less gaussian compared to 

the other signal using only HOS. This indicates that 

the wavelet based denoising method using WF db2 

effectively filtered interference noise. Furthermore, 

additive noise (Gaussian white noise) present in the 

EMG signal is suppressed in the bispectrum of the 

output signal. MUAPs have been estimated in Fig. 7 

for “rectus femoris” muscle for a subject. 
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Figure 6 – Linearity tests for three subjects during 

walking trail using WT and HOS 

 

Figure 7 – Output signal of “rectus femoris” during 

walk for a subject using bispectrum 

 

 

4   Conclusion 
In this research, WT is successfully applied for 

denoising SEMG signal and HOS is also able to 

suppress Gaussian white noise. So, both the 

techniques were suitable for SEMG signal 
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processing, which filtered recording noise (denoise) 

and remove Gaussian noise effectively. Results 

show that WF db2 can denoise EMG signal most 

effectively among the other WFs. The study also 

shows that increase in the muscle contraction level 

(from low contraction level to high contraction 

level) provides significant increase in SEMG mean 

power frequency demonstrating changes in the MUs 

recruitment. Moreover, power spectrum of SEMG 

shows a shift to lower frequencies during fatigue. 

Bispectrum analysis shows that the signal becomes 

less Gaussian and more linear with increasing 

muscle force. 
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