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Abstract: - The plasma is susceptible to conditions in etching and depositing thin films. In manufacturing plasma 
processes, ion energy distribution (IED) plays an important role in studying ion energy effects on films qualities. 
The IED can be used to monitor plasma conditions. For a real-time monitoring purpose, auto-correlated time-series 
neural network model of IED is presented. IEDs were measured by a non-invasive ion analyzer. The experiments 
were conducted by using a pulsed-plasma enhanced chemical vapor deposition system. Monitoring performance of 
neural network model was measured as a function of duty ratio and hidden neuron number. The prediction error 
quantified by the root-mean square error of optimized model is 0.334. The improvement of this model over the 
validation data is more than 57%. The proven high improvement indicates that plasma faults can be detected by 
means of A-NTS model of IED. 
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1   Introduction 

The plasma generally plays a crucial role in 
depositing or etching thin films in manufacturing 
integrated circuits. To maintain process quality, 
plasma states inside the equipment should be 
stringently monitored. For this purpose, a huge 
number of in-situ diagnostic instruments have been 
applied to monitor certain variation in plasma. These 
may include an optical emission spectroscopy [1-3], a 
radio-frequency (RF) impedance sensor [4-6], or a RF 
matching network monitor [7]. These instruments 
monitor plasmas by observing variations in radicals, 
impedance in terms of resistance and reactance, or 
matching variables such as a reflected power. Apart 
from these, ion energy distribution (IED) measured by 
using an ion energy analyzer can effectively be used 
for plasma monitoring. IED is strongly involved in 
determining films characteristics such as a deposition 
rate or etching rate. Most importantly, it may a good 
indicator to characterize various properties on film 
surfaces.  

IED is expected to vary sensitively to a variation in 
process parameters such as a RF bias power or 
pressure.  For a real-time monitoring purpose, a neural 
network time-series model constructed with 
diagnostic data was used to monitor plasma states [2-3, 
8]. However, there were no reports on neural network 
model of IED. 

In this study, a neural network time-series model of 
IED is presented. The IED data were collected by 
using a Non-invasive Ion Energy Analyzer [8-10]. 
Validation studies [9-10] show that the technique (i.e. 
NIEA) is well suited for use in manufacturing to 
monitor in real time, since it is completely 
noninvasive.  

 Anomalies in plasmas were simulated by changing 
a process parameter called duty ratio. The 
performance of IED models were optimized as a 
function of time variables as well as in terms of the 
number of hidden neurons (NHN). 
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Fig. 1 Schematic of the Plasma SystemT 
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2 Experimental Data 
A TSiN films were depositedT by using a TPECVD

system (PLASMARTP

TM
P). Schematic of the equipment 

is shown in Fig. 1. A cylinder type of chamber has a 
diameter of 0.27m and a height of 0.2m. A unique 
more than 5×10P

11
P/cmP

3
P in Ar plasma as well as a 

plasma double stack antenna produces a plasma 
density of non-uniformity of less than ±5%. Chamber 
vacuum was controlled by a turbo molecular pump, a 
rotary pump, and a vacuum gauge. Gas flow rates were 
precisely controlled through the mass flow controllers 
and the process pressure was controlled by a throttle 
valve. Meanwhile, a non-invasive ion energy analyzer 
was used to collect IED data. To simulate faults in 
plasma, the varied duty ratios Tare 80, and 100%. The 
flow rates of SiHB4B and NHB3B were set to 8 and 22sccm, 
respectively. The bias power and frequency were fixed 
at 50W and 250 Hz. The data acquisition time was set 
to 5 min. The ion energy analyzer provides various 
distributions such as low or high IED. Here, the low 
IED was used for modeling. 

Fig. 2 Structure of the A-NTS 

3. Neural Network Model 
A schematic of back-propagation neural network 

(BPNN) [11] employed for the prediction of IED is 
shown in Fig. 2. As shown in Fig. 2, the output of the 
hidden layer is determined by a bipolar sigmoid 
function. The equations of bipolar sigmoid function 
can be written as 
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where  and  are the weighted input and 

output to the th neuron in the th layer, respectively. 
And  is the gradient of the bipolar sigmoid 

function.
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The output of the output layer is determined by a 
linear function, which is expressed as 

lkiki ginout ,,               (2) 

where  is the gradient of the linear function. lg
A weight update equation, commonly known as the

generalized delta rule [12], is expressed as 
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where  is the connection strength between the kjiW ,,

j th neuron in the layer  and the th neuron in 

the layer k .

)1(k i

kjiW ,, is the calculated change in the 

weight to minimize error ( E ) of all the input-output 
pairs. is the learning rate. In this study, that was set 
to 0.01. 

S(t+m)

S(t) S(t-k) Bias

Bias

As shown in Fig. 2, the IED is predicted by using
the past and current data of the same output. This type
of time series model constructed with neural network
is referred to as auto-correlated neural time series
(A-NTS) model. As seen in Fig. 2, the prediction
performance of A-NTS model is affected by the kinds 
of combinations of (k, m). In this study, either k or m 
was varied from 1 to 3 with an increment of 1. 
Therefore, A-NTS models were constructed for a total
of 9 combinations. Also, the performance of A-NTS 
models was evaluated as a function of NHN. The 
NHN was increasingly varied from 2 to 9 by one.
Other training factors involved in BPNN training as 
well as those stated earlier are shown in Table 1.

 Table 1. Conditions of Modeling Parameters 

Parameter Ranges

Error Tolerance 0.1
Learning rate 0.01

Weight Distribution ±1
Gradient of Slope 1

K 1, 2, 3

M 1, 2, 3
NHN 2 ~ 9
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4 Results 
The performance of A-NTS model was measured 

by the root mean square error (RMSE), defined as 
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where  is the total number of test data, and  and 

 are the desired output and the calculated output 

of the th neuron in the output layer, respectively. The 
RMSEs calculated with the training and testing data 
are referred to as T-RMSE and P-RMSE, respectively. 

q jd
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i

The IED data collected at 100% were used to construct 
a neural network model. The performance of 
constructed model was validated with other data set at 
80%. The data of 100% were separated into two 
training and testing data. Each data consisted of 66 
patterns. For example, the performance of A-NTS 
model constructed at (1, 1) and NHN 2 is shown in Fig. 
3(a) and (b).  

 
 
 
 
 
 
 
 
 
 
 

 
 

 

Fig. 3(a) Training values of 100% model 

 
 
 
 
 
 
 
 

 
 

 
 

Fig. 3(b) Prediction values of 100% model 

The training and testing RMSEs for the constructed 
A-NTS model are 0.2396, 0.2686, respectively. As 
shown in Fig. 3(b), the IED pattern predicted from the 
A-NTS model matches well the corresponding actual 
one. 
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Fig. 4(a) Training errors as a function of NHN 
and (k, m) 
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Fig. 4(b) Prediction errors as a function of NHN 
and (k, m) 

 
The performance of A-NTS model is optimized as a 

function of NHN and (k, m) combination. The results 
are shown in Fig. 4(a) and (b). Figure 4(a) and (b) 
show the RMSE in terms of training and testing errors, 
respectively. As seen in Fig. 4(a), the T-RMSE seems 
to be affected considerably with either NHN or (k, m). 
Particularly, the effect of NHN is noticeable at (3, 2) 
and (3, 3). The smallest T-RMSE of 0.1533 is 
obtained at 9 NHN and (3, 2) (k, m). Compared to 
T-RMSE, as shown in Fig. 4(b), the variations in 
P-RMSE are much larger. The smallest P-RMSE of 
0.2673 is obtained at 2 NHN and (3, 3) (k, m).  

1

E
lo

w
 (e

V
)

P-
R

M
SE

6 11 16 21 26 31 36 41 46 51 56 61 66

65.7

65.9

66.1

66.3

66.5

66.7

66.9

67.1

67.3

67.5

67.7

1 6 11 16 21 26 31 36 41 46 51 56 61 66

E
lo

w
 (e

V
)

Actual Value

Predicted Value

12th WSEAS International Conference on SYSTEMS, Heraklion, Greece, July 22-24, 2008  

ISBN: 978-960-6766-83-1 161 ISSN: 1790-2769



Figure 5 shows the variations in P-RMSE for 100% 
model validated with 80%, respectively. 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 5 Validation errors of 100% model for 80% data 
 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 6 Monitoring sensitivity of 100% model  
for 80% IED 

 
To evaluate the monitoring performance of A-NTS 

model as a function of NHN and combinations, the 
improvements of optimized A-NTS model as to those 
predictions shown in Figs. 5 were calculated as 
 
Improvement =  

100
)(

%80

%80%100 ×
−

−−−
RMSEP

RMSEPRMSEP  (%)   (6) 

 
The improvement defined above can be used as an 

indicative of monitoring sensitivity for the variations 
in either NHN or combination. The results for 80% 
IED are shown in Fig. 6. As shown in Fig. 6, the 
monitoring sensitivity varies quite differently 
depending on NHN or combinations. All the 
improvements shown in Fig. 6 are in the range 

0.03-57.44%. The largest improvement occurred at 2 
NHN and (2, 3) (k, m). The corresponding P-RMSE 
is about 0.334. In several cases, the improvement is 
less than 10%. The corresponding combinations and 
NHNs should be avoided in building A-NTS model 
for plasma monitoring. For the optimized model 
determined in Fig. 4(b), the corresponding 
improvement is 33.1%. This value is much smaller 
than the one just determined. Therefore, the model 
found in Fig. 6 is determined as the most accurate 
model.  
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Table 2. Evaluation of overall performance of A-NTS 
model as a function of combination at fixed NHN. 
 

NHN Combination Improvement (%) Sum (%)

2 (2, 3) 57.44 240.00 
3 (3, 2) 45.79 182.30 
4 (2, 3) 39.11 180.68 
5 (1, 2) 39.24 215.70 
6 (3, 3) 34.80 199.49 
7 (3, 2) 43.66 185.90 
8 (3, 2) 39.09 177.70 
9 (3, 2) 43.00 202.19 

 
Table 3. Evaluation of overall performance of A-NTS 
model as a function of NHN at fixed combination. 
 
Combination NHN Improvement (%) Sum (%)

(1, 1) 5 15.75 82.02 
(1, 2) 5 39.24 181.35 
(1, 3) 3 26.95 117.90 
(2, 1) 9 35.16 181.01 
(2, 2) 6 28.01 187.52 
(2, 3) 2 57.44 199.88 
(3, 1) 8 24.88 108.41 
(3, 2) 3 45.79 280.80 
(3, 3) 9 36.87 245.08 

 
Next, the overall performance of A-NTS model 

was evaluated as a function of NHN or combination. 
For this, those improvements were summed as a 
function of NHN or combination. The results are 
shown in Table 2 and 3. In either table, the optimized 
NHN or combinations, their corresponding 
improvements, and sums are provided. For example, 
the information just stated is shown as 9 
combinations were varied at 2 NHN. A sum of 240 is 
simply obtained by adding 9 improvements obtained 
for all combinations at 2 NHN. As shown in Table 2, 

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

, m)(k

P-
R

M
SE

0

10

20

30

40

50

60

(1,1) (1,2) (1,3) (2,1)

2 3 4 5

6 7 8 9

(

Im
pr

ov
em

en
t (

%
)

2,2) (2,3) (3,1) (3,2) (3,3)

(k, m)

12th WSEAS International Conference on SYSTEMS, Heraklion, Greece, July 22-24, 2008  

ISBN: 978-960-6766-83-1 162 ISSN: 1790-2769



the sum is in the range 180-240%. The largest sum is 
achieved at 2 NHN. This indicates that the effect of 
combinations on improvement of A-NTS model is 
the most significant particularly at 2 NHN. And the 
largest improvement in Table 2 was obtained at the 
largest sum. As the NHN was varied at one fixed 
combination, the results are shown in Table 3. In this 
case, the sum is in the range 82-281%. The largest 
sum is obtained at (3, 2). This indicates that the effect 
of varying NHN is the most significant particularly at 
(3, 2) combination. In consequence, the largest sum 
in Table 3 is larger than that in Table 2. This means 
that varying NHN at a fixed combination yielded 
better performance in overall fashion. As revealed 
already, however, it should be noted that this does not 
guarantee the construction of the most accurate 
prediction model. 

 
 

4   Conclusion 
In this study, A-NTS models of IED data were 

constructed by using the BPNN. The performance of 
A-NTS model was evaluated individually as well in 
overall fashion. The performance of A-NTS model 
was detailed in terms of NHN and various 
combinations. The optimized model yielded a high 
sensitivity to the faults simulated experimentally. The 
demonstrated accuracy seems to be enough to detect 
faults concerned here, but its applicability to detect 
smaller variations in IED still remains a further study.  
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