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Abstract: - We revisit several definitions and concepts related to distances; then, we propose the concept of 

proto-distance and of discrimination function, in view to better model sensorial discrimination and recognition 

processes. Applications to medicine, including pedometry, hearing, speech clues, and diagnosis in these fields 

are briefly discussed. 

  

Key-Words: - Distance, pseudo-distance, bio-mimetic distance, classification, sounds, pedometry, foot 

pressure, gnathophonics. 

 

1   Introduction 
 

Distance functions play an important role in 

classification theory and in pattern recognition 

processes; moreover, they constitute the basis for 

several chapters in the metric theory in mathematics. 

The subject has been extensively studied in 

functional analysis in the frame of metric spaces 

theory and in physical, biological, information 

processing, and engineering applications.  Many 

authors have proposed various distances to fit a class 

of applications. Good mathematical overviews are 

presented in [1]-[4]; examples of discussions of 

specific metrics in applications are [5]-[14]; several 

hybrid distances are covered in [5]-[8] (Wilson and 

Martinez). However, existing metrics may not 

always represent in a suitable form the manner 

humans perceive “distances” in the sense of 

differences between objects, phenomena and 

processes detected by senses. In fact, distances are 

mathematical abstractions that do not necessarily 

reflect the human discrimination processes.  

In this paper we address several issues related to the 

modeling of the way humans discriminate between 

sensations and we introduce and analyze several new 

distances and functions that generalize distances. 

While the discussion in the paper is oriented toward 

fundamental issues, we also address applications 

related to classification, recognition and several 

medical applications, like diagnostic in pedometry, 

gnathophonics and gnathosonics; in the last two 

cases, we address classification and discrimination of 

sounds. 

The paper organization is as follows: In the second 

Section we recall several definitions. The third 

section includes a brief discussion of sensing and 

discrimination processes. The next section introduces 

the concept of distinction function and includes 

several definitions of distances and distinction 

functions. The last sections address applications and 

present conclusions. 

 

2   Basic definitions  
 

In this section, we recall the definitions of several 

concepts related to distances and of several types of 

distances. 

 

Definition.  A quasi-metric is defined [3] 

(Istrăţescu) as a function ℜ→× XXp :  with the 

properties: 

i) ( ) Xxxxp ∈∀= 0,  

ii) ( ) ( ) ( ) Xzyxyzpzxpyxp ∈∀+≤ ,,,,,  

Notice that, according to the definition by 

Istrăţescu in [3], the metric should not take only 

positive values, moreover it is not required to be 

commutative. Instead, for every metric p , the 

function defined by ( ) ( )yxpyxq ,, =  is also a (quasi-) 

metric, moreover is named conjugated (quasi-) 

metric. The conjugate quasi-metrics induce two 

topologies on X . 

 

Semi-metrics 

Definition. A semi-metric is a function 

ℜ→× XXe :  satisfying the properties: 
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i) ( ) yxyxe =⇒= 0,  

ii) yxxyeyxe ,),(),( ∀=  

iii) ( ) ( ) ( ) Xzyxyzezxeyxe ∈∀+≤ ,,,,,  

Notice that the quasi-metric has a weaker 

condition (i) and lacks the commutativity condition 

(ii) in the semi-metric definition. Some authors, like 

(Olga Costinescu, [2]), use the term “écart” for the 

semi-metric. 

 

Definition.  A set X is endowed with a metric if on X 

is defined a function R→× XXd :  satisfying the 

conditions ([2], [4]): 

i) ( ) Xyxyxd ∈∀≥ ,0,   (1) 

   iia) ( ) xxxd ∀= 0,    (2)  

or, not equivalently 

   iib) ( ) 0, =yxd  iff yx =   (3) 

   iii)    ( ) ( ) Xyxxydyxd ∈∀= ,,,   (4) 

iv) ( ) ( ) ( ) zyxzydyxdzxd ,,,,, ∀+≤   (5) 

The quasi-metric is a metric, according to [3]  if it 

satisfies: 

iv) ( ) 0, =yxp   iff  yx = . 

However, most authors (excepting a few, like 

Istrăţescu), also require that the values taken by the 

function are positive, moreover that the function is 

symmetric i.e. if yxxydyxd ,),(),( ∀= . 

The condition (iv) defines a specific type of 

distance, the Archimedean distance. Only conditions 

(i)-(iii) are considered essential, in general. 

Notice that, if (iv) is true, taking yz = , 

( ) ( ) ( )yydyxdyxd ,,, +≤   it results that ( ) 0, ≥xxd .  

 

Any Banach space B  with the norm denoted by || 

|| is a metric space with 

( ) 2
, yxyxd −= . (6) 

 

Other typical distances are also related to the 

norm concept, Hilbert and Banach spaces concepts: 

( ) yxyxd −=,2   (7) 

( ) ii
i

yxyxd −= max,3   (8) 

(the last one being sometimes named Tchebychev 

distance). 

A typical example of Archimedean distance is the 

Euclidian distance in a Hilbert vector space: 

( ) ( ) 22
, 〉−〈=−= ∑ yxyxyxd

i

iiE   (9) 

 

where ( )nxxx ,,1 K= , ( )nyyy ,,1 K= , n is the number 

of components of a vector (the dimension of the 

vector space). The absolute value of the difference 

distance, ||),( yxyxd −= , and the Euclidean 

distance, ∑ =
−=

n

i ii yxyxd
1

2)(),( , are among the 

most popular distances. More general than the 

Euclidean distance is the Minkowski distance, 

defined as  

( ) ( )q

i

q
iiM yxyxd ∑ −=, . (10) 

The Euclidian distance is well exemplified on the 

space nℜ , where ( )En d||,||,,ℜ  is a metric space. 

 

Subsequently, we assume X  is a normed vector 

space.  

A quite natural condition for distances in vector 

spaces is the position (translation) invariant 

condition, which requires that a parallel 

displacement does not affect distances: 

( ) ( )yxdyaxd ,, =+   (11) 

( ) ( )yxdbyxd ,, =+   (12) 

Also, the so-called homogeneity condition: 

( ) ( )yxdayaxad ,||, ⋅=⋅⋅  

While this set of conditions is well suited for 

Euclidean spaces and for vision in the plane, it is not 

justified in other cases, like hearing. 

In Fig. 1, graphs of the elementary distances are 

exemplified. 

   
(a)  (b)  (c) 

Fig. 1. (a) The graph of the distance ||),( yxyxd −= . (b) 

Graph of the Euclidean distance from the origin to a point 

in the plane, 22),( yxyxd += . (c) Graph of the ‘root 

of power 2” distance, ||),( 22 yxyxd −= . 

 

Instead of the conditions for distance functions, we 

suggest weaker conditions, namely, for ℜ→δ X: ,  

i) ( ) ( ) −∞≠δ=δ yxyx
y

,min,   (13) 

ii) ( ) ( )xyyx ,, δ=δ  (14) 

iii) ( ) ( )zxyx ,, δ<δ     if  zxyx −<−   (15) 

We do not request that ( ) 0, =δ yx , but we request 

that ( ) −∞≠δ xx, . A δ -distance will be named 0δ - 

distance if ( ) ( ) 0,min, =δ=δ yxyx
y

. 

Based on (iii) it follows that ( ) yxyx =⇒=δ 0, . 

The third condition, of strict monotony with respect 

to yx − , is a common-sense condition for proper 
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discrimination. For example, a “distance” function 

with the graph as in Fig. 2 would not discriminate 

between A  and B , moreover would classify C  

closer to D than to A . 

 

 

 

 

 

 

 
Fig. 2. Example of cases that can not be accepted from 

the common-sense point of view 

 

A (very) strong condition is imposed in the 

definition of ultra-metrics: 

( ) ( ) ( )( ) zyxzxdyxdyxdu ,,,,,max, ∀≤   (16) 

 

3.   Proto-distances  
Consider a set X  and a function ℜ→×∆ XX:  

satisfying: 

i)   ( ) ( ) Xyxyyxx ∈∀∆=∆ ,,,  (diagonal XX ×  

property); 

ii)  ( ) ( ) xyyxxx ≠∀∆≠∆ ,,  (discrimination 

power property). 

A proto-distance will be named symmetric if it 

satisfies: 

iii) ( ) ( ) Xyxyyx ∈∀∆=∆ ,,, . 

Condition (i) says that there is an element ℜ∈o , 

unique, such that ( ) ( ){ }XXxxo ×∈=−∆ ,ker , where 

o−∆  is the function obtained by subtracting from 

the function ∆  the value o . 

Fact 1.  Any distance is a proto-distance.  

The verification of this fact is immediate. 

Fact 2.  The function +
∗ ℜ→×−∆=∆ XXo :  

satisfies 

i)   ( ) Xxxx ∈∀=∆∗ 0,  

ii)  ( ) yxyx =⇒=∆∗ 0,  

iii) ( ) ( )xyyx ,*, ∆=∆∗  

Notice that ∗∆  is not a semi-metric, as it differs in 

two of the properties required for semi-metrics: 

( )yxsyx d ,≠>≠  may equal 0; 

( ) ( ) ( )zysyxszxs ddd ,,, +≤  is not necessarily true 

(see, for example, the definition by Gaşpar, [1]). 

Notes. 

The definition of proto-distance from an object 

Xx ∈  to a set XA ⊂  could mimic the definition of 

the distance from on object to a set: 

 ( ) ( )yxAx
Ay

,inf, ∆=∆
∈

. 

However, with this definition 

 ( ) ( ) oAxAx +∆≠∆ ∗ ,,  (17) 

A more appropriate definition could be: 

 ( ) ( )[ ]ooyxAx
Ay

+−∆=∆
∈

,inf,  (18) 

For the moment, we can not say if 
∗∆  induces a 

topology on X ; the Archimedean condition 

( ) ( ) ( )( )zydyxdzxd ,,, +≤  plays an essential part in 

defining a topology through a metric, but this 

property is not satisfied by 
∗∆ . 

 

3   Hybrid distances and two properties  
 

Property. Any positive linear combination of 

(semi-) distances on the same set is a (semi-) 

distance. 

Indeed, it is easy to verify that all the properties of 

(semi-)distances are satisfied by  

∑ =
⋅=

r

i ii yxdayxd
1

),(),(  (19) 

if ),( yxdi  are distances and riai ,..,10 =∀≥ . For 

example, the triangular (Archimedean) property 

reads: 

For 
21 ,dd  distances, let  

( )( ) ( ) ( ) xxxdbxxdaxxdbda ∀=+=+ 0,,, 2121  

( )( ) ( ) ( ) 0,,0, 2121 =+⇔=+ yxdbyxdayxdbda  

( ) 0,1 =⇔ yd &  ( ) 0,2 =yxd  

( )( ) ( )( ) ( )( ) ⇔+++≤+ zydbdayxdbdazxdbda ,,, 212121
 

( ) ( ) ( ) ( )[ ]
( ) ( )[ ]zydyxdb

zydyxdazxdbzxda

,,

,,,,

22

1121

++

++≤+⇔
 

( ) ( ) ( ) azydyxdzxd ×+≤ ,,, 111  

( ) ( ) ( ) bzydyxdzxd ×+≤ ,,, 222  

The above property allows us to construct hybrid 

distances starting from simpler distances and using 

weighted averages of them. Moreover, 

Property. If ),( yxdi
 are (semi-) distances on the 

same set, then ∑ =
⋅=

r

i ii yxdayxd
1

22 ),(),( , is a 

(semi-) distance. 

The above property can be extended in the form 

of q-root of a sum of q-powers of distances. 

Therefore, based on a set of elementary distances, 

we can build, using various strategies as in the 

above properties and comments, a large number of 

hybrid distances to suit specific applications. The 

process of weighting and the choice of the strategy 

can be made adaptive. 

 

 ( )yx ,0δ  

 yx −0  

A B 

C 

D 

x0 
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4 Bio-inspired Distances and  

Logarithmic Distances 
 

Not every distance function mimics our senses. For 

example, the human two sounds separated by on 

octave, with frequencies 
121 2, fff =  as being 

equally separated, irrespective of the basis of the 

octave: ( ) ( ) 212211 ,2,2, ffffff ∀δ=δ . 

Taking logarithms, we obtain ff ln2ln)2ln( += ,  

2lnln)2ln( =− ff . Therefore, distances between 

logarithms should be considered to mimic the 

human ear. However, lower frequencies are more 

important in the discrimination of speech. A 

weighting through the inverse of the logarithm of 

the frequency is therefore justified: 

( )2/)(ln

lnln

21

12

ff

ff

+

−
. (20) 

We start here with the absolute value distance. 

Taking the logarithm before applying the absolute 

value yields: 

( )
y

x
yxyxdL lnlnln,1 =−=    (21) 

Denoting yax =  procedures 

( ) ayxdL ln,1 =   (22) 

Notice that 1Ld  is not a true distance in the 

classical sense, because, for a distance ( )yxd , , dln  

is no more a distance. However, 

( ) ( )( )yxdyxd dL ,1ln, +=   (23) 

is a distance, in the sense of Definition 1, if ( )yxd ,  

is a distance. Moreover, if ( ) yxyxd −=, , yax = , 

( ) ( )xayxd dL ⋅−+= 11ln,   (24) 

and ( ) xayxd dL ln1ln, +−≈  for 11 >>⋅− xa , 

( ) 0,  →
→ yx

dL yxd   (25) 

( ) 1
11

1
, +

⋅−+

−
≅ x

xa
yxd dL  for 1, →→ ayx  (26) 

or 

( ) 1

11

1
, +

−+

−
≅

y

x
yxd dL    for  yx →   (27) 

We may ask if and how the Archimedean 

property manifests for such a distance. The answer 

is that the property holds; in Fig. 3 is shown the 

graph corresponding to the property. More 

precisely, the graph of the Archimedean expression 

|)|1log(|)|1log(|)|1log(),( zyzyzyf +−−+++= , 

corresponding to the verification of the 

Archimedean inequality ),(),0(),0( zydydzd +≤  

)0( =x  is plot. The ranges of the variables are 

1000,1000 ≤≤≤≤ zy . 

 
Fig. 3. Graph of the Archimedean property (see text)  

 

Consider the distance 

( )
( )

( )

2lnln1ln

ln1ln

1ln

1ln

2
ln

ln
,2

−++

+−
=

=
+

−
=

+

−
=

xa

xa

xa

xa

yx

yx
yxdL

  (28) 

for 

  ( )yxa →→ 1 , ( )
x

x
yxdL

ln2ln

ln
,2

+−
→   (29) 

with the graph in Fig. 4. For the distance 

( ) =
+

−
=

+

−
=

yyya

yya

yx

yx
yxdL

lnln

lnln

lnln

lnln
,1  

( )yaf
ya

a

yya

yya
,

ln2ln

ln

lnlnln

lnlnln
=

+
=

++

−+
=   (30) 

the graph is shown in Fig. 5. 

Distances taking values on [ )∞,0  can be converted 

into distances on [ )1,0  using a sigmoidal function, 

for instance ( ) 







−

+
⋅=σ

− 2

1

1

1
2

x
e

x . 

We will denote by the index σ  a distance 

transformed using a sigmoid, for example 

( ) ( )( ) ( )yxyxdyxd −σ=σ=σ ,, 11  

1
1

2
−

+
=

−− yx
e

  (31) 

  
Fig. 4. Graph of the proto-distance 

)2/|ln(|/||ln),(1 yxyxyxdL +−= , for various 

intervals of the variables: ]1000,1[∈x , ]1000,1[∈x , 

]1000,1[∈y , ]1000,1[∈y , ]1,01.0[∈x , ]1,01.0[∈y , 

]1.0,01.0[∈x , ]1.0,01.0[∈y . 
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Fig. 5. The graph of )2/|ln(|/||ln),(1 yxyxyxdL +−=  

 

Various hetero-distances can be conceived, tailored 

for specific applications; such a distance could be  

L+⋅+⋅=− ),(),(),( 31 yxdbyxdayxd Cambhetero . 

   
Fig. 6 . Graphs of a hetero-distance similar to the 

above, in the ranges ]100,1[∈x , ]100,1[∈y  and 

respectively ]1000,100[∈x , ]1000,100[∈y . 

 

(Pseudo-) distances taking values on ( )∞+∞− ,  are 

converted to ( )1,0  by the standard sigmoidal 

function, ( ) ( )xex −+=σ 1/14 ; for example 

 

( ) ( )

yx

yx

yx

e
yxyxd

yxsL

−+

−
=

−
+

=

=
+

=−σ=
−−σ

11
1

1

1

1
ln,

ln1

  (32) 

A logarithmic type distance using normalization 

to the minimum of the two values is: 

)),ln(min(

||ln
),(2

yx

yx
yxd

−
=   (33) 

The variation of this distance with the values of 

the variables is plot in Fig. , for several ranges. 

The so-called Camberra distance (definition based 

on [5]) is a normalized distance, with the form: 

||

||
),(

yx

yx
yxd

+

−
=   (34) 

The plot for Camberra distance is shown in Fig. 7, 

for various ranges of the inputs.  

  
Fig. 7. Camberra distance behavior for a) ]100,1[∈x , 

]100,1[∈y ; b) ]1000,100[∈x , ]1000,100[∈y ; and c) 

]1000,900[∈x , ]1000,900[∈y  

 

Another hybrid pseudo-distance, based on 

logarithms, is: 

( ) ( ) ( )( )4

4 ||1ln||1ln||1ln),( yxyxyxyxd −++++⋅−+=

0,0 ≥≥ yx . 

  
Fig. 8. Pseudo-distance 4d , for ranges a) 

]2,1[],2,1[ ∈∈ yx  and b) ]20,1[],20,1[ ∈∈ yx  

( ) ( )( ) ( )( )32

3

||1ln||1ln||1ln

),(

yxyxyx

yxd

−++−++−+=

=
 

 
Fig. 9. Hybrid distance 3d , 

( ) ( )( ) ( )( )32

3

||1ln||1ln||1ln

),(

yxyxyx

yxd

−++−++−+=

=
, for the 

range  ]20,1[],20,1[ ∈∈ yx  

 

 

4 Applications to Diagnosis in 

Medicine: Pedometry, Gnatho-phonics 

and Gnatho-sonics 
 

Gnathic means “of or pertaining to the jaw” (see 

[16]). Gnatho-phonics is an interdisciplinary 

discipline we defined as the analysis of the speech 

in relation to the pathology of the gnathic system, 

that is, in relation with the state of dentition, 

mandible and temporo-mandibular joints.  

The basic distance we defined and used is a 

normalized one, namely: 

 

∑∑
==

+

−
==

4

0

4

0 )
2

ln(

||ln
),(

k kbka

kbka

k

k FF

FF
dbad  (16) 

 

where kaF  represents the formant number #k (k = 0 

corresponds to the pitch); the second index (“a”) 

represents the sound. For each formant (k), a 

distance 
kd  is computed between the two sounds, 

and the total distance between the sounds is the sum 

of these elementary distances. When one of the 

sounds has no pitch, the elementary distance for that 
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formant is assigned to 1. We found that the typical 

elementary distances 
kd  have values in the range 0.7 

… 0.9. Values under 0.5 indicate that the possibility 

of discrimination between those sounds is poor at 

that frequency. Therefore, such values point to a 

poor spelling, that is, constitute a pathological sign.  

Similar uses have been made of the discussed hybrid 

and pseudo-distances in applications related to 

pedometry. I have used in this purpose the results 

obtained in the Grant CALORCO. The classification 

results have been encouraging and will be described 

in detail in another paper. 

 

6   Discussion and conclusions  
 

We have revisited the meaning of “distance” 

mathematical concept and the meaning of 

“discrimination”, as related to sensorial 

discrimination. We have noted that the distance 

concept is not always appropriate; therefor we 

introduced the proto-distance definition and briefly 

analyzed the properties of proto-distances. Next, we 

have defined several hybrid proto-distances and 

distances, in relation to their discrimination power. 

Applications in medicine have been briefly 

discussed. 
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