
Multi-criterion Tabu Programming for Pareto-optimal Task Assignment
in Distributed Computer Systems

JERZY BALICKI

Naval University of Gdynia
ul. Smidowicza 69, 81-103 Gdynia,

POLAND

Abstract: - Multi-criterion tabu programming is a new approach for a decision making support and it can be applied to
determine the Pareto solutions. Similarly to rules applied in the genetic programming, tabu programming solves
problems by using a general solver that is based on a tabu algorithm. In the formulated task assignment problem as
a multi-criterion question, both a workload of a bottleneck computer and the cost of system are minimized; in contrast,
a reliability of the distributed system is maximized. Moreover, there are constraints for the performance of the
distributed systems and the probability that all tasks meet their deadlines. In addition, constraints related to memory
limits and computer locations are imposed on the feasible task assignment. Finally, results of some numerical
experiments have been presented.

Key-Words: - Tabu search algorithm, multi-criterion optimization, genetic programming

1 Introduction
Tabu programming is a new paradigm of artificial
intelligence that can be applied for computer decision
aid. Similarly to the genetic programming that applied a
genetic algorithm [20], tabu programming solves
problems by using a general solver that is based on a
tabu algorithm. Tabu search is a combinatorial
optimization technique for development in zero-one
programming, non-convex non-linear programming, and
general mixed integer optimization [22]. Some
interesting task scheduling algorithms based on tabu
search are proposed by Węglarz in [21]. This technique
is applied to continuous functions by selection a discrete
encoding of the problem. In a tabu search, special areas
are forbidden during the seeking in a space of all
possible combinations [10].
 Tabu programming paradigm has been implemented
as an algorithm operated on the computer program that
produces the solution. Tabu search algorithm has been
extended by using a computer program instead of
a mathematical variable.
 The first tabu programming for multi-criterion
optimization has been presented by Balicki in 2007 [3].
The optimization technique called multi-criterion
optimization tabu programming MOTP has been applied
to the bi-criterion task assignment problem and the sub-
optimal in Pareto sense solutions have been found. For
solving the hierarchical solutions in the multi-objective
optimization problem, MOTP was applied for three-
criterion problem of robot trajectory, too [2].
 In this paper, an improved MOTB for solving new
three-criterion with constraints optimization problems of

task assignment in the distributed computer system has
been considered. The sub-effective task assignment has
been obtained by development of that approach. Finally,
results of some numerical experiments have been
presented.

2 Convention of tabu programming
Tabu programming (TP) is based on tabu search
algorithm rules. However, it is not a straightforward
modification of tabu algorithm or the transformation of
rules from the genetic programming. It is rather the
combination of tabu search algorithm and genetic
programming to create new optimization technique by
avoiding some disadvantages of them. Moreover, aspects
of multi-criterion optimization are respected.
 The tabu programming operates on the computer
program that produces an outcome that can be treated as
a solution to the problem. Because in the computer
program several modifications may be curried out by
exchanging functions or arguments, the neighborhood of
the current program can be created as a result of some
adjustments of the given software procedure. TP avoids
entrainment in cycles by forbidding moves which lead to
points in the solution space previously visited. Number
of moves and the number of programs in the
neighborhood is much smaller than the number of
solutions in the search space. To avoid a path already
investigated a point with poor quality can be accepted
from the neighborhood of the current program [11]. This
insures new regions of a solution space will be explored

12th WSEAS International Conference on COMPUTERS, Heraklion, Greece, July 23-25, 2008

ISBN: 978-960-6766-85-5 142 ISSN: 1790-5109

in with the goal of avoiding local minima and finding the
global minimum [15].
 To keep away from repeating the steps, recent moves
are recorded in some tabu lists [18]. That lists forms the
short-term memory. The memory content can vary as the
search proceeds [5]. At the beginning, the target is
testing the solution space, during a 'diversification' [12].
As candidate regions are identified the algorithm is more
focused to find local optimal solutions in an
'intensification' process. The TP operates with the size,
variability, and adaptability of the memory [7].
 Special areas are forbidden during the seeking in a
search space. From that neighborhood N(xnow) of the
current solution xnow that is calculated by the given
program, we can choose the next solution xnext to
a search trajectory of TP [16]. The accepted alternative is
supposed to have the best value of an objective function
among the current neighborhood. In the tabu search
algorithm based on the short-term memory, a basic
neighborhood of a current solution may be reduced to a
considered neighborhood K (xnow) because of the
maintaining a selective history of the states encountered
during the exploration [13]. Some solutions, which were
visited during the given last term, are excluded from the
basic neighborhood according to the classification of
movements [19]. If any solution satisfies an aspiration
criterion, then it can be included to the considered
neighborhood, only [6].
 Computer programs from the neighborhood are
constructed from the basic program that produces the
current solution. The basic program is modeled as a tree
(Fig. 1).
 That tree is equivalent to the parse tree that most
compilers construct internally to represent the specified
computer program. A tree can be changed to create the
neighborhood N(xnow) of the current program. For
instance, we can remove a sub-tree with the randomly
chosen node from the parent tree. Next, the randomly
selected node as a terminal is required to be inserted. A
functional node is an elementary procedure randomly
selected from the primary defined set of functions [17]:

{ }Nn fff ,...,,...,1=F (1)

 In the problem of finding trajectory of underwater
vehicle [2], we define set of functions, as bellow:

{ /*,-,,, += if_endmove,e,if_obstaclF } (2)

 The procedure if_obstacle takes two arguments. If the
obstacle is recognized ahead the underwater vehicle, the
first argument is performed. In the other case, the second
argument is executed. The function move requires three
arguments. It causes the movement along the given
direction with the velocity equals the first argument
during assumed time Δt. The time Δt is the value that is

equal to the division a limited time by Mmax. The
direction of the movement is changed according to the
second and third arguments. The second argument is the
angle of changing this direction up if it is positive or
down if it is negative. Similarly, the third argument
represents an angle of changing the direction to the left if
it is positive or – to the right if it is negative.
 The procedure if_end ends the path of the underwater
vehicle if it is in the destination region or the expedition
is continued if it is not there.

3 Function and argument sets for task
assignment
Set of procedures for task assignment problems can be
defined, as follows [3]:

{ }/,-,*,,+= θF (3)

where
θ – the procedure that converts M=V+I(V+J) input real
numbers called activation levels on M output binary
numbers
()VvIJijJ

m
VI

m
vi

m
I

m NNNxxxxxxxx ,...,,...,,,...,,...,,...,,,...,,...,,..., 1111111
ππππ .

⎩
⎨
⎧=

 , the toassigned is if1
case.other thein0

iwj
ijx

ππ

⎩⎨
⎧= , toassigned is taskif1

case,other thein0
iwvTm

vix
 Nv – number of the vth module in the line for its

dedicated computer,
},...,,...,{ 1 Ii wwwW = - the set of the processing

nodes,
T={T1,...,Tv,...,TV} - the set of parallel performing tasks,

 },...,,...,{ 1 Jj πππ=Π - the set of available computer sorts.
 The procedure θ is obligatory the root of the

program tree and appears only one in a generated
program. In that way, the formal constraints

Mmxm ,1, =∈B for B = {0, 1}, are satisfied. An
activation level is supplied to a root from the sub-tree
that is randomly generated with using arithmetic
operators {+, -, *, /} and the set of terminals.
 Furthermore, each procedure is supposed to be
capable to allow any value and data type that may
possible be assumed by any terminal selected from the
following terminal set::

{ }Mm aaa ,...,,...,1=T (4)

 For finding the trajectory of the underwater vehicle,
the set of arguments consists of the real numbers
generated from the interval (-1; 1) [2]. However, for the
task assignment the set of arguments is determined in the
other way.

12th WSEAS International Conference on COMPUTERS, Heraklion, Greece, July 23-25, 2008

ISBN: 978-960-6766-85-5 143 ISSN: 1790-5109

 Let be the set of numbers that consists of the
given data for the instance of the problem. A terminal set
is determined for the problem, as below [3]:

D

,LD ∪=T (5)

where – set of n random numbers, L D=n

Fig. 1. The program tree for procedure (x-3)*z/x

4 Neighborhood and short-term memory
Some programs from the neighborhood can be created
by sort of movements related to removing the randomly
chosen terminal node and then adding a sub-tree with the
functional node as a root. That sub-tree can be
constructed from the random number of nodes.
 If the node is the root of the reducing sub-tree, it can
be protected against choosing it to be that root in a
reducing operation until the next λ1 movements are
performed. However, that node can be selected to be the
root for adding the sub-tree. Similarly, if the node is the
root of the adding tree, it can be protected against
choosing him to be that root in a adding operation until
the next λ2 movements is performed.
 We can implement that by introducing the assignment
vector of the node names to the node numbers. We insert
a dummy node D0 (Fig. 1) as the number 0, for the
formal reason. The node index ,,1 maxLl = where maxL
represents the assumed maximal number of nodes in the
tree. Numbers are assigned from the dummy node to
lower layers and from the left to the right at the current
layer. The assignment vector of the node names to the
node numbers for the tree from the Figure 1 can be
represented, as below:

(xzxD ,,,3/,,,*,0 −+=

Moreover, the vector of function and argument
assignment can be defined, as follows:

()aaaaffff ,,,,,,,=ψ (7)

 The vector of the argument number can be
determined, as below:

()0,0,0,0,2,2,2,1=χ (8)

 *

 + /

 x -3 x z

 D00

1

 We can introduce the matrix of reducing node
memory [] ,

maxmax LLnmmM ×
− = where represents

the number of steps that can be missed after reduction
the function f

nmm

m (with the parent fn) as a root of the chosen
sub-tree. After exchanging that root, .1λ=nmm
Similarly, we can define the matrix of adding node
memory [] ,~

maxmax LLnmmM ×
+ = where nmm~

represents the number of steps that can be missed after
adding the function fm (with the parent fn) as a root of the
created sub-tree. After exchanging that root, .~

2λ=nmm
Parameters λ1 and λ2 are usually equal to λ, but we can
adjust their values to tune the tabu programming for the
solved problem. On the other hand, the length of the
short-term memory λ is supposed to be no greater than
Lmax. After λ movements, the selected node may be
chosen for operation once again.

)ω (6)

5 Multi-criterion optimization tabu
programming
MOTP can be used for solving an optimization problem
with at least two criteria. From the set of the competitive
solutions, we prefer admissible ones and coordinates of
an ideal point are calculated. Then, the compromise
solution with the smallest distance to the ideal point
is selected, as follows:

*x

),(min)*,(
)(

i

xNx

i xxKxxK
now∈

= (9)

where K – a distance function to the ideal point . ix
 The selection function W for the choosing the next
solution in the search path is constructed from the
criterion K and functions describing constraints [8].
Usually, the penalty function can be applied [9]. Figure 2
shows an outlook of the algorithm MOTP.
 A paradigm of tabu programming gives opportunity
to solve the several problems. The MOTP has been
written in the Matlab language. Initial numerical
experiments confirm that sub-optimal in Pareto sense
solutions can be found by tabu programming for two-
criterion task assignment and three-criterion underwater
vehicle trajectory.

2 3

4 5 7 6

12th WSEAS International Conference on COMPUTERS, Heraklion, Greece, July 23-25, 2008

ISBN: 978-960-6766-85-5 144 ISSN: 1790-5109

Fig. 2. An algorithm MOTP

6. Criteria for task assignment and
scheduling
To test the ability of the MOTP, we consider a multi-
criterion optimisation problem for task assignment in
a distributed computer system, where three criteria are
optimized. In the formulated task assignment problem as
a multi-criterion question, both Zmax – a workload of
a bottleneck computer and C – the cost of system are
minimized; in contrast, R – a reliability of the distributed
system is maximized. Moreover, there are constraints for
the performance of the distributed systems and the
probability that all tasks meet their deadlines. In
addition, constraints related to memory limits and
computer locations are imposed on the feasible task
assignment.
 It is a new approach for formulation multi-objective
task assignment problems, although some three-criterion
task assignment questions have been formulated yet [4].
Meta-heuristics like evolutionary algorithms, tabu
algorithm and genetic programming have been applied
for solving multi-criterion optimization problem. We can

compare quality of obtained task assignments by MOTP
to qualities produced by the other multi-criterion meta-
heuristics.

1. Initial procedure k:=0
(A) Generation of the program that produces xnow
(B) xbest := xnow , xbis:= xnow
(C) Kmin:=K(xnow) Finding allocations of tasks in a distributed system

may estimation of a criterion by taking a benefit of the
particular properties of some workstations or an
advantage of the computer load.

(D) Initialization of restriction matrixes M +, M -
(E) Setting λ1, λ2

2. Solution selection and stop criterion k:=k+1
(A) Finding a set of tree candidates K(M +,M -, xnow) from

the neighborhood N(xnow)
 Let the task be executed on some computers taken
from the set of available computer sorts. The overhead
performing time of the task Tv by the computer πj is
represented by an item . A computer with the heaviest
task load is the bottleneck machine and its workload is
a critical value that is supposed to be minimized. The
first criterion is the workload of the bottleneck computer
for the allocation x, and its values are provided by the
subsequent formula [4]:

vjt

(B) Selection of the next solution xnext∈ K (M +, M -, xnow)
with the minimal value of the selection function W
among solutions taken from K

(C) Aspiration condition. If all solutions from the
neighborhood are tabu-active and Kmin≥K(xnow), then
xbest := xnow, Kmin:=K(xnow)

(D) Re-linking of search trajectory. If xnext was not
changed during main iteration, then crossover procedure
for parents xbest, xbis is performed. A child with the
smaller value of K is xnext, and another one is xbis

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+= ∑∑∑∑∑∑
≠ ≠

==∈

m
uk

m
vi

V

v=

V

vu
u=

I

ik
i=

I

k
vuikij

m
vi

J

j

V

v=
vjIi

xxxxtxZ
1 1 1 11 1,1max max)(τπ

(10)(E) If k = 0.4 Kmax, then λ1:= 4λ1, λ2:= 4λ2
(F) If k = Kmax or maximal time of calculation is exceeded,

then STOP.
where

(),,...,,...,,,...,,...,,...,,,...,,...,,..., 1111111 VvIJijJ
m
VI

m
vi

m
I

m NNNxxxxxxxxx ππππ= 3. Up-dating
(A) xnow := xnext

vuikτ – the total communication time between the task Tv
assigned to the ith node and the Tu assigned to the kth
node.

(B) If K(xnow)< Kmin, then xbis := xbest and go to 1(B)
(C) After reduction the procedure fm (with the parent fn) as a

root of the chosen sub-tree M -:= M - –1, .1λ=nmm
(D) After adding the procedure fm (with the parent fn) as a root

of the created sub-tree M +:= M + –1, .~
2λ=nmm

 Figure 3 shows the workload of the bottleneck
computer in the distributed computer system for
generated task assignments by an enumerative algorithm.
The function Zmax takes value from the period [40; 110]
(TU - time unit) for 256 solutions. What is more, even a
small change in task assignment related to the movement
of a task to another computer or a substitution of
computer sort can cause a relatively big alteration of its
workload. For instance, the migration of one task from
the assignment with Zmax=40 TU may increase the
workload to the 64 or even 88 TU.

(E) go to 2

0 50 100 150 200 250 300
40

50

60

70

80

90

100

110

Fig. 3. Workload of the bottleneck computer for generated
solutions.

Z [TU]max

Number of solution

12th WSEAS International Conference on COMPUTERS, Heraklion, Greece, July 23-25, 2008

ISBN: 978-960-6766-85-5 145 ISSN: 1790-5109

 The second measure of the task assignment is a cost
of computers that is calculated, as below:

π
ij

I

i

J

j
j xxC ∑∑

= =1 1
=)(κ

(11)

where κj corresponds to the cost of the computer πj.
 Let jπ be failed independently due to an exponential

distribution with rate jλ
~ . We do not take into account of

repair and recovery times for failed computer in
assessing the logical correctness of an allocation.
Instead, we are supposed to allocate tasks to computers
on which failures are least likely to occur during the
execution of tasks. Computers and tasks can be assigned
to nodes in purpose to maximize the third criterion – the
reliability function R defined, as below [3]:

)~exp()(
1 1 1

∏∏∏
= = =

−=
V

v

I

i

J

j
ij

m
vivjj xxtxR πλ

(12)

7. Constraints and decision variables
The minimal performance of the distributed systems

 is required that can be estimated according to the
following formula:

minΘ

π
ij

I

i

J

j
j xx ∑∑

= =

Θ
1 1

=)(ϑ (13)

where jϑ is the numerical performance of the computer
πj for the task benchmark.
 The probability that all tasks meet their deadlines is
supposed to be greater than the minimal probability Pmin.
The precedence constraints among tasks are figured in
calculation of task release time and the timing
constraints on tasks are considered. Let the distributed
program Pn may begin its running after λn and complete
before δn. Moreover, we assume a conditionally running
task is performed with the probability q and its
complementary task – with the probability (1-q). A task
in the loop is performed k times for a run (k=1,2,...,Lmax),
and each repetition of this task is performed with the
probability p. The instance, where a loop task runs k
times, can be meet with the probability (1 - p) p k -1. The
instance, where a conditional task appears and the loop
task runs k times, occurs with the probability:

pi=q(1- p) p k-1 (14)

 Times of task completions (C1,...,Cv,...,CV) can be
calculated for scheduled allocation modules to
computers [4]. Let d),,(mm Nxxx π= v represents the
completion deadline for the vth task. If , then the
time constraint is satisfied what can be written as

vv dC ≤

1)(=− vv Cdξ . If the deadline is exceeded, then

0)(=− vv Cdξ . If at least one task exceeds the deadline,
then deadline constraint for the ith instance is not
satisfied. Probability that all tasks meet their deadlines
for K instances of the flow graph is calculated:

∑ ∏
= ∈

−=
K

i Mm
vviD

iv

xCdpxP
1

))(()(ξ (15)

 Constraints related to memory limits are related to the
assumption that a computer is supposed to be equipped
with necessary capacities of resources. Let the following
memories z1,...,zr,...,zR be available in the distributed
system and let djr be the capacity of memory zr in the
workstation πj . We assume the task Tv reserves cvr units
of memory zr and holds it during a program execution.
The memory limit Rir of the rth resource in a machine
cannot be exceeded in the ith node, what is written, as
bellows:

.,1,,1,)(
1 1

RrIixcxdxR
J

j

V

v

m
vivrijjrir ==−= ∑ ∑

= =

π (16)

8. Problem formulation and numerical
experiments
Let (X, F, P) be the multi-criterion optimisation question
for finding the representation of Pareto-optimal solutions
[1]. It is established, as follows:
1) X - an admissible solution set

|{)(JVIx +∈= BX ;)(minΘ≥Θ x ;)(minD PxP ≥

;,1,,1,0)(RrIixRir ==≥

;,1 ,1
1

Vvx
I

i

m
vi ==∑

=

 },1,1
1

Iix
J

j
ij ==∑

=

π

2) F - a quality vector criterion
3 : RX →F (17)

where
R – the set of real numbers,
F(x) = [Zmax(x), C(x), –R(x)] T for x∈X,
3) P - the Pareto relation [1].

 Figure 4 shows the cut of the evaluation space that is
explored by the most effective meta-heuristic AMEA*
[4]. Evolutionary algorithm AMEA* [4], tabu algorithm
MOTA [14] and genetic programming MGP [3] have
been applied for solving some versions of multi-criterion
task assignment. We can compare quality of obtained
solutions by MOTP to qualities produced by the other
multi-criterion meta-heuristics.

12th WSEAS International Conference on COMPUTERS, Heraklion, Greece, July 23-25, 2008

ISBN: 978-960-6766-85-5 146 ISSN: 1790-5109

N*

C [MU]

Zmax[TU]

P1

P2

P3

P4

P5

Fig. 4. Pareto front and results of AMEA*

 The binary search space consisted of 1.0737x109
elements and included 25 600 admissible solutions. By
enumerative algorithm the set of Pareto points was
found. Quality of obtained solutions by the algorithms
was determined by the level of the convergence to the
known Pareto set [2]. An average level S was
calculated for fifty runs of the algorithm. That tabu
programming MOTP gives better outcomes than the
genetic programming MGP for the same number of
selection function or fitness function calculations. After
350 assessments of those functions, an average level of
Pareto set obtaining is 1.7% for the MOTP, 3.6% for the
MGP.
 An average level of convergence to the Pareto set, a
maximal level, and the average number of optimal
solutions become worse, when the number of decision
variables increase. An average level is 25.1% for the
MOTP versus 37.9% for the MGP, if search space
consists of 1.2396x1018 elements and includes 342 758
admissible solutions.

9. Concluding remarks
 Tabu programming can be used for finding solution
to several problems, especially some multi-criterion
optimization problems. A computer program as a tree is
a subject of tabu operators such as selection from
neighborhood, short-term memory and re-linking of the
search trajectory. The MOTP has been applied for
operating on the computer procedures written in the
Matlab language. Initial numerical experiments
confirmed that sub-optimal in Pareto sense, task
assignments could be found by tabu programming.
 Our future works will focus on testing the other sets
of procedures and terminals to find the Pareto-optimal
solutions for distinguish criteria and constraints.
Moreover, we will concern on a development the
combination between tabu search and evolutionary
algorithms for finding efficient solutions.

References:
1. Ameljanczyk, A.: Multicriteria Optimization, WAT Press,

Warsaw (1986)
2. Balicki, J.: Hierarchical Tabu Programming for Finding the

Underwater Vehicle Trajectory, International Journal of
Computer Science and Network Security, 7, 32--37 (2007)

3. Balicki, J.: Tabu Programming for Multiobjective Optimization
Problems, International Journal of Computer Science and
Network Security, 7, 44--50 (2007)

4. Balicki, J.: Immune Systems in Multi-criterion Evolutionary
Algorithm for Task Assignments in Distributed Computer
System. LNCS, 3528, pp. 51--56, Springer, Heidelberg, (2005)

5. Battiti, R.: Reactive search: Toward self-tuning heuristics, In V.
J. Rayward-Smith, editor, Modern Heuristic Search Methods,
John Wiley and Sons Ltd, 61--83 (1996)

6. Battiti, R., Tecchiolli, G.: Simulated annealing and tabu search
in the long run: a comparison on qap tasks, Computer Math.
Applic., 28, 1--8 (1994)

7. Crainic, T. G., Toulouse, M., Gendreau, M.: Toward a
Taxonomy of Parallel Tabu Search Heuristics, INFORMS
Journal on Computing, 9, 61--72 (1997)

8. Dell’Amico, M., Trubian, M.: Applying Tabu Search to the Job-
Shop Scheduling Problem, Annals of Operations Research, 41,
231--252, (1993)

9. Faigle, U., Kern, W.: Some Convergence Results for
Probabilistic Tabu Search, ORSA Journal on Computing, 4, 32--
38, (1992)

10. Glover, F.: Tabu Search — Part I, ORSA Journal on Computing,
1, 190--206, (1989)

11. Glover, F.: Tabu Search — Part II, ORSA Journal on
Computing, 2, 4--32, (1990)

12. Glover, F.: Tabu Search: A Tutorial, Interfaces, 20, 74--94,
(1990)

13. Glover, F., Laguna, M.: Tabu Search, Kluwer Academic
Publishers, Boston (1997)

14. Hansen, M. P.: Tabu Search for Multicriteria Optimisation:
MOTS. Proceedings of the Multi Criteria Decision Making,
Cape Town, South Africa, (1997)

15. Hertz, A.: Finding a Feasible Course Schedule Using Tabu
Search, Discrete Applied Mathematics and Combinatorial
Operations Research and Computer Science, 35 (1992)

16. Jaszkiewicz, A., Hapke, M., Kominek, P.: Performance of
Multiple Objective Evolutionary Algorithms on a Distributed
System Design Problem – Computational Experiment, LNCS,
Vol. 1993, pp. 241--255, Springer, Heidelberg, (2001)

17. Koza, J.R.: Genetic programming. The MIT Press, Cambridge
1992.

18. Lokketangen, A., Jornsten, A. K., Storoy, S.: Tabu Search
within a Pivot and Complement Framework, International
Transactions in Operations Research, 1, 305--316, (1994)

19. Rego, C.: A Subpath Ejection Method for the Vehicle Routing
Problem, Management Science, 44, 1447--1459 (1998)

20. Schaefer, R., Kołodziej, J.: Genetic Search Reinforced by the
Population Hierarchy. In De Jong K. A., Poli R., Rowe J. E.
(eds): Foundation of Genetic Algorithms, Morgan Kaufman
Publisher (2003) 383--399.

21. Weglarz, J., Nabrzyski, J., Schopf, J.: Grid Resource
Management: State of the Art and Future Trends. Kluwer
Academic Publishers, Boston (2003)

22. Widmer, A. M.: The Job-shop Scheduling with Tooling
Constraints: A Tabu Search Approach, J. Opt. Res. S, 42, 75--82
(1991)

12th WSEAS International Conference on COMPUTERS, Heraklion, Greece, July 23-25, 2008

ISBN: 978-960-6766-85-5 147 ISSN: 1790-5109

