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Abstract: - Multi-criterion tabu programming is a new approach for a decision making support and it can be applied to 
determine the Pareto solutions. Similarly to rules applied in the genetic programming, tabu programming solves 
problems by using a general solver that is based on a tabu algorithm. In the formulated task assignment problem as 
a multi-criterion question, both a workload of a bottleneck computer and the cost of system are minimized; in contrast, 
a reliability of the distributed system is maximized. Moreover, there are constraints for the performance of the 
distributed systems and the probability that all tasks meet their deadlines. In addition, constraints related to memory 
limits and computer locations are imposed on the feasible task assignment. Finally, results of some numerical 
experiments have been presented. 
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1   Introduction 
Tabu programming is a new paradigm of artificial 
intelligence that can be applied for computer decision 
aid. Similarly to the genetic programming that applied a 
genetic algorithm [20], tabu programming solves 
problems by using a general solver that is based on a 
tabu algorithm. Tabu search is a combinatorial 
optimization technique for development in zero-one 
programming, non-convex non-linear programming, and 
general mixed integer optimization [22]. Some 
interesting task scheduling algorithms based on tabu 
search are proposed by Węglarz in [21]. This technique 
is applied to continuous functions by selection a discrete 
encoding of the problem. In a tabu search, special areas 
are forbidden during the seeking in a space of all 
possible combinations [10].  
     Tabu programming paradigm has been implemented 
as an algorithm operated on the computer program that 
produces the solution. Tabu search algorithm has been 
extended by using a computer program instead of 
a mathematical variable.  
     The first tabu programming for multi-criterion 
optimization has been presented by Balicki in 2007 [3]. 
The optimization technique called multi-criterion 
optimization tabu programming MOTP has been applied 
to the bi-criterion task assignment problem and the sub-
optimal in Pareto sense solutions have been found. For 
solving the hierarchical solutions in the multi-objective 
optimization problem, MOTP was applied for three-
criterion problem of robot trajectory, too [2].  
     In this paper, an improved MOTB for solving new 
three-criterion with constraints optimization problems of 

task assignment in the distributed computer system has 
been considered. The sub-effective task assignment has 
been obtained by development of that approach. Finally, 
results of some numerical experiments have been 
presented. 
 
 
2   Convention of tabu programming 
Tabu programming (TP) is based on tabu search 
algorithm rules. However, it is not a straightforward 
modification of tabu algorithm or the transformation of 
rules from the genetic programming. It is rather the 
combination of tabu search algorithm and genetic 
programming to create new optimization technique by 
avoiding some disadvantages of them. Moreover, aspects 
of multi-criterion optimization are respected. 
     The tabu programming operates on the computer 
program that produces an outcome that can be treated as 
a solution to the problem. Because in the computer 
program several modifications may be curried out by 
exchanging functions or arguments, the neighborhood of 
the current program can be created as a result of some 
adjustments of the given software procedure. TP avoids 
entrainment in cycles by forbidding moves which lead to 
points in the solution space previously visited. Number 
of moves and the number of programs in the 
neighborhood is much smaller than the number of 
solutions in the search space. To avoid a path already 
investigated a point with poor quality can be accepted 
from the neighborhood of the current program [11]. This 
insures new regions of a solution space will be explored 
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in with the goal of avoiding local minima and finding the 
global minimum [15].  
     To keep away from repeating the steps, recent moves 
are recorded in some tabu lists [18]. That lists forms the 
short-term memory. The memory content can vary as the 
search proceeds [5]. At the beginning, the target is 
testing the solution space, during a 'diversification' [12]. 
As candidate regions are identified the algorithm is more 
focused to find local optimal solutions in an 
'intensification' process. The TP operates with the size, 
variability, and adaptability of the memory [7].  
     Special areas are forbidden during the seeking in a 
search space. From that neighborhood N(xnow) of the 
current solution xnow that is calculated by the given 
program, we can choose the next solution xnext to 
a search trajectory of TP [16]. The accepted alternative is 
supposed to have the best value of an objective function 
among the current neighborhood. In the tabu search 
algorithm based on the short-term memory, a basic 
neighborhood of a current solution may be reduced to a 
considered neighborhood K (xnow) because of the 
maintaining a selective history of the states encountered 
during the exploration [13]. Some solutions, which were 
visited during the given last term, are excluded from the 
basic neighborhood according to the classification of 
movements [19]. If any solution satisfies an aspiration 
criterion, then it can be included to the considered 
neighborhood, only [6]. 
     Computer programs from the neighborhood are 
constructed from the basic program that produces the 
current solution. The basic program is modeled as a tree 
(Fig. 1).  
     That tree is equivalent to the parse tree that most 
compilers construct internally to represent the specified 
computer program. A tree can be changed to create the 
neighborhood N(xnow) of the current program. For 
instance, we can remove a sub-tree with the randomly 
chosen node from the parent tree. Next, the randomly 
selected node as a terminal is required to be inserted. A 
functional node is an elementary procedure randomly 
selected from the primary defined set of functions [17]: 

{ }Nn fff ,...,,...,1=F  (1)

     In the problem of finding trajectory of underwater 
vehicle [2], we define set of functions, as bellow: 

{ /*,-,,, += if_endmove,e,if_obstaclF } (2)

     The procedure if_obstacle takes two arguments. If the 
obstacle is recognized ahead the underwater vehicle, the 
first argument is performed. In the other case, the second 
argument is executed. The function move requires three 
arguments. It causes the movement along the given 
direction with the velocity equals the first argument 
during assumed time Δt. The time Δt is the value that is 

equal to the division a limited time by Mmax. The 
direction of the movement is changed according to the 
second and third arguments. The second argument is the 
angle of changing this direction up if it is positive or 
down if it is negative. Similarly, the third argument 
represents an angle of changing the direction to the left if 
it is positive or – to the right if it is negative.  
     The procedure if_end ends the path of the underwater 
vehicle if it is in the destination region or the expedition 
is continued if it is not there. 
 
3   Function and argument sets for task 
assignment 
Set of procedures for task assignment problems can be 
defined, as follows [3]: 

{ }/,-,*,,+= θF  (3)

where 
θ  – the procedure that converts M=V+I(V+J) input real 
numbers called activation levels on  M output binary 
numbers 
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 Nv – number of the vth module in the line for its 

dedicated computer, 
},...,,...,{ 1 Ii wwwW =  - the set of the processing 

nodes, 
T={T1,...,Tv,...,TV} - the set of parallel performing tasks,

 },...,,...,{ 1 Jj πππ=Π - the set of available computer sorts.
      The procedure θ is obligatory the root of the 

program tree and appears only one in a generated 
program. In that way, the formal constraints 

Mmxm ,1, =∈B  for B = {0, 1}, are satisfied. An 
activation level is supplied to a root from the sub-tree 
that is randomly generated with using arithmetic 
operators {+, -, *, /} and the set of terminals.  
     Furthermore, each procedure is supposed to be 
capable to allow any value and data type that may 
possible be assumed by any terminal selected from the 
following terminal set:: 

{ }Mm aaa ,...,,...,1=T  (4)

      For finding the trajectory of the underwater vehicle, 
the set of arguments consists of the real numbers 
generated from the interval (-1; 1) [2]. However, for the 
task assignment the set of arguments is determined in the 
other way.  
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     Let  be the set of numbers that consists of the 
given data for the instance of the problem. A terminal set 
is determined for the problem, as below [3]:   

D

,LD ∪=T  (5)

where  – set of n random numbers, L D=n  
 
 

 

 
 
 
 
 

 
 
 

 
 
 
 

Fig. 1. The program tree for procedure (x-3)*z/x 
 
 
4   Neighborhood and short-term memory 
Some programs from the neighborhood can be created 
by sort of movements related to removing the randomly 
chosen terminal node and then adding a sub-tree with the 
functional node as a root. That sub-tree can be 
constructed from the random number of nodes.  
     If the node is the root of the reducing sub-tree, it can 
be protected against choosing it to be that root in a 
reducing operation until the next λ1 movements are 
performed. However, that node can be selected to be the 
root for adding the sub-tree. Similarly, if the node is the 
root of the adding tree, it can be protected against 
choosing him to be that root in a adding operation until 
the next λ2 movements is performed.  
     We can implement that by introducing the assignment 
vector of the node names to the node numbers. We insert 
a dummy node D0 (Fig. 1) as the number 0, for the 
formal reason. The node index ,,1 maxLl =  where maxL  
represents the assumed maximal number of nodes in the 
tree. Numbers are assigned from the dummy node to 
lower layers and from the left to the right at the current 
layer. The assignment vector of the node names to the 
node numbers for the tree from the Figure 1 can be 
represented, as below: 

( xzxD ,,,3/,,,*,0 −+=

Moreover, the vector of function and argument 
assignment can be defined, as follows: 

( )aaaaffff ,,,,,,,=ψ  (7) 

     The vector of the argument number can be 
determined, as below: 

( )0,0,0,0,2,2,2,1=χ  (8)

 * 

  +    / 

   x    -3   x     z 

   D00 

1 

     We can introduce the matrix of reducing node 
memory [ ] ,

maxmax LLnmmM ×
− =  where  represents 

the number of steps that can be missed after reduction 
the function f

nmm

m (with the parent fn) as a root of the chosen 
sub-tree. After exchanging that root, .1λ=nmm  
Similarly, we can define the matrix of adding node 
memory [ ] ,~

maxmax LLnmmM ×
+ =  where nmm~  

represents the number of steps that can be missed after 
adding the function fm (with the parent fn) as a root of the 
created sub-tree. After exchanging that root, .~

2λ=nmm  
Parameters λ1 and λ2 are usually equal to λ, but we can 
adjust their values to tune the tabu programming for the 
solved problem. On the other hand, the length of the 
short-term memory λ is supposed to be no greater than 
Lmax. After λ movements, the selected node may be 
chosen for operation once again. 

)ω     (6)

 
5   Multi-criterion optimization tabu 
programming 
MOTP can be used for solving an optimization problem 
with at least two criteria. From the set of the competitive 
solutions, we prefer admissible ones and coordinates of 
an ideal point are calculated. Then, the compromise 
solution  with the smallest distance to the ideal point 
is selected, as follows: 

*x

),(min)*,(
)(

i

xNx

i xxKxxK
now∈

=  (9)

where K – a distance function to the ideal point . ix
     The selection function W for the choosing the next 
solution in the search path is constructed from the 
criterion K and functions describing constraints [8]. 
Usually, the penalty function can be applied [9]. Figure 2 
shows an outlook of the algorithm MOTP. 
     A paradigm of tabu programming gives opportunity 
to solve the several problems. The MOTP has been 
written in the Matlab language. Initial numerical 
experiments confirm that sub-optimal in Pareto sense 
solutions can be found by tabu programming for two-
criterion task assignment and three-criterion underwater 
vehicle trajectory.  

 

2 3

4 5 7 6 
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Fig. 2. An algorithm MOTP 
 
 
6.   Criteria for task assignment and 
scheduling 
To test the ability of the MOTP, we consider a multi-
criterion optimisation problem for task assignment in 
a distributed computer system, where three criteria are 
optimized. In the formulated task assignment problem as 
a multi-criterion question, both Zmax – a workload of 
a bottleneck computer and C – the cost of system are 
minimized; in contrast, R – a reliability of the distributed 
system is maximized. Moreover, there are constraints for 
the performance of the distributed systems and the 
probability that all tasks meet their deadlines. In 
addition, constraints related to memory limits and 
computer locations are imposed on the feasible task 
assignment.  
     It is a new approach for formulation multi-objective 
task assignment problems, although some three-criterion 
task assignment questions have been formulated yet [4]. 
Meta-heuristics like evolutionary algorithms, tabu 
algorithm and genetic programming have been applied 
for solving multi-criterion optimization problem. We can 

compare quality of obtained task assignments by MOTP 
to qualities produced by the other multi-criterion meta-
heuristics. 

1. Initial procedure   k:=0 
(A) Generation of the program that produces xnow  
(B)  xbest := xnow , xbis:= xnow 
(C)  Kmin:=K( xnow)      Finding allocations of tasks in a distributed system 

may estimation of a criterion by taking a benefit of the 
particular properties of some workstations or an 
advantage of the computer load.  

(D) Initialization of restriction matrixes M +, M -  
(E) Setting λ1, λ2 

2. Solution selection and stop criterion    k:=k+1 
(A) Finding a set of tree candidates K(M +,M -, xnow) from 

the neighborhood N(xnow) 
     Let the task be executed on some computers taken 
from the set of available computer sorts. The overhead 
performing time of the task Tv by the computer πj is 
represented by an item . A computer with the heaviest 
task load is the bottleneck machine and its workload is 
a critical value that is supposed to be minimized. The 
first criterion is the workload of the bottleneck computer 
for the allocation x, and its values are provided by the 
subsequent formula [4]: 

vjt

(B) Selection of the next solution xnext∈ K (M +, M -, xnow)  
with the minimal value of the selection function W 
among solutions taken from K 

(C) Aspiration condition. If all solutions from the 
neighborhood are tabu-active and Kmin≥K( xnow), then 
xbest := xnow, Kmin:=K( xnow) 

(D) Re-linking of search trajectory. If xnext  was not 
changed during main iteration, then crossover procedure 
for parents xbest, xbis is performed. A child with the 
smaller value of K is xnext, and another one is xbis 
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(10)(E) If  k = 0.4 Kmax, then λ1:= 4λ1,  λ2:= 4λ2 
(F) If  k = Kmax or maximal time of calculation is exceeded, 

then STOP.  
where  
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m
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m
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m
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m NNNxxxxxxxxx ππππ=  3. Up-dating 
(A) xnow := xnext 

vuikτ – the total communication time between the task Tv 
assigned to the ith node and  the Tu assigned to the kth 
node. 

(B) If K( xnow)< Kmin, then xbis := xbest and go to 1(B) 
(C) After reduction the procedure fm (with the parent fn) as a 

root of the chosen sub-tree M -:= M - –1, .1λ=nmm  
(D) After adding the procedure fm (with the parent fn) as a root 

of the created sub-tree M +:= M + –1, .~
2λ=nmm  

     Figure 3 shows the workload of the bottleneck 
computer in the distributed computer system for 
generated task assignments by an enumerative algorithm. 
The function Zmax takes value from the period [40; 110] 
(TU - time unit) for 256 solutions. What is more, even a 
small change in task assignment related to the movement 
of a task to another computer or a substitution of 
computer sort can cause a relatively big alteration of its 
workload. For instance, the migration of one task from 
the assignment with Zmax=40 TU may increase the 
workload to the 64 or even 88 TU. 

(E) go to 2 
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Fig. 3. Workload of the bottleneck computer for generated 
solutions.

Z [TU]max

Number of solution

12th WSEAS International Conference on COMPUTERS, Heraklion, Greece, July 23-25, 2008 

ISBN: 978-960-6766-85-5 145 ISSN: 1790-5109



     The second measure of the task assignment is a cost 
of computers that is calculated, as below: 

π
ij

I

i

J

j
j xxC ∑∑

= =1 1
=)( κ  

(11)

where κj corresponds to the cost of the computer πj.  
     Let jπ  be failed independently due to an exponential 

distribution with rate jλ
~ . We do not take into account of 

repair and recovery times for failed computer in 
assessing the logical correctness of an allocation. 
Instead, we are supposed to allocate tasks to computers 
on which failures are least likely to occur during the 
execution of tasks. Computers and tasks can be assigned 
to nodes in purpose to maximize the third criterion – the 
reliability function R defined, as below [3]: 

)~exp()(
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7.   Constraints and decision variables 
The minimal performance of the distributed systems 

 is required that can be estimated according to the 
following formula: 

minΘ

π
ij

I

i

J

j
j xx ∑∑

= =

Θ
1 1

=)( ϑ  (13)

where jϑ  is the numerical performance of the computer 
πj for the task benchmark. 
     The probability that all tasks meet their deadlines is 
supposed to be greater than the minimal probability Pmin. 
The precedence constraints among tasks are figured in 
calculation of task release time and the timing 
constraints on tasks are considered. Let the distributed 
program Pn may begin its running after λn and complete 
before δn. Moreover, we assume a conditionally running 
task is performed with the probability q and its 
complementary task – with the probability (1-q). A task 
in the loop is performed k times for a run (k=1,2,...,Lmax), 
and each repetition of this task is performed with the 
probability p. The instance, where a loop task runs k 
times, can be meet with the probability (1 - p) p k -1. The 
instance, where a conditional task appears  and the loop 
task runs k times, occurs with the probability:  

pi=q(1- p) p k-1 (14)

     Times of task completions (C1,...,Cv,...,CV) can be 
calculated for scheduled allocation modules to 
computers  [4]. Let d),,( mm Nxxx π= v represents the 
completion deadline for the vth task. If , then the 
time constraint is satisfied what can be written as 

vv dC ≤

1)( =− vv Cdξ . If the deadline is exceeded, then 

0)( =− vv Cdξ . If at least one task exceeds the deadline, 
then deadline constraint for the ith instance is not 
satisfied. Probability that all tasks meet their deadlines 
for K instances of the flow graph is calculated:  

∑ ∏
= ∈

−=
K

i Mm
vviD

iv

xCdpxP
1

))(()( ξ              (15) 

     Constraints related to memory limits are related to the 
assumption that a computer is supposed to be equipped 
with necessary capacities of resources. Let the following 
memories z1,...,zr,...,zR be available in the distributed 
system and let djr be the capacity of memory zr in the 
workstation πj . We assume the task Tv reserves cvr units 
of memory zr and holds it during a program execution. 
The memory limit Rir of the rth resource in a machine 
cannot be exceeded in the ith node, what is written, as 
bellows:  

.,1,,1,)(
1 1

RrIixcxdxR
J

j
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vivrijjrir ==−= ∑ ∑

= =

π (16) 

 
8.   Problem formulation and numerical 
experiments 
Let (X, F, P) be the multi-criterion optimisation question 
for finding the representation of Pareto-optimal solutions 
[1]. It is established, as follows:  
1) X - an admissible solution set 

|{ )( JVIx +∈= BX ;)( minΘ≥Θ x ;)( minD PxP ≥

;,1,,1,0)( RrIixRir ==≥
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2) F - a quality vector criterion 
3   : RX →F  (17)

where 
R  – the set of real numbers, 
F(x) = [Zmax(x), C(x), –R(x)] T for x∈X, 
3) P - the Pareto relation [1]. 

  
     Figure 4 shows the cut of the evaluation space that is 
explored by the most effective meta-heuristic AMEA* 
[4]. Evolutionary algorithm AMEA* [4], tabu algorithm 
MOTA [14] and genetic programming MGP [3] have 
been applied for solving some versions of multi-criterion 
task assignment. We can compare quality of obtained 
solutions by MOTP to qualities produced by the other 
multi-criterion meta-heuristics. 
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Fig. 4. Pareto front and results of AMEA* 

      The binary search space consisted of 1.0737x109 
elements and included 25 600 admissible solutions. By 
enumerative algorithm the set of Pareto points was 
found. Quality of obtained solutions by the algorithms 
was determined by the level of the convergence to the 
known Pareto set [2]. An average level S  was 
calculated for fifty runs of the algorithm. That tabu 
programming MOTP gives better outcomes than the 
genetic programming MGP for the same number of 
selection function or fitness function calculations. After 
350 assessments of those functions, an average level of 
Pareto set obtaining is 1.7% for the MOTP, 3.6% for the 
MGP.  
     An average level of convergence to the Pareto set, a 
maximal level, and the average number of optimal 
solutions become worse, when the number of decision 
variables increase. An average level is 25.1% for the 
MOTP versus 37.9% for the MGP, if search space 
consists of 1.2396x1018 elements and includes 342 758 
admissible solutions. 
 
9.   Concluding remarks 
     Tabu programming can be used for finding solution 
to several problems, especially some multi-criterion 
optimization problems. A computer program as a tree is 
a subject of tabu operators such as selection from 
neighborhood, short-term memory and re-linking of the 
search trajectory. The MOTP has been applied for 
operating on the computer procedures written in the 
Matlab language. Initial numerical experiments 
confirmed that sub-optimal in Pareto sense, task 
assignments could be found by tabu programming.  
     Our future works will focus on testing the other sets 
of procedures and terminals to find the Pareto-optimal 
solutions for distinguish criteria and constraints. 
Moreover, we will concern on a development the 
combination between tabu search and evolutionary 
algorithms for finding efficient solutions. 
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