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Abstract: - The FDTD (Finite Difference Time Domain) is the most popular method for transient electromagnetic 
simulation. A FDTD method is developed through applying Yee’s algorithm and a Mur boundary condition. The 
method is implemented in Java using object-oriented design principles. The program can simulate and visualize an 
evolving electromagnetic field in any cuboidal, multiple material domain. The program is made available as open 
source from www.east-lancashire-research.org.uk (AR-08-17). 
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1 Introduction 
   Electromagnetic fields are governed by Maxwell’s 
equations. Through developing a computational model, 
electromagnetic fields can be simulated on computer 
and results can be visualised. The design of electrical 
components can be analysed through the application of 
computational methods. There are a number of 
techniques for the numerical solution of Maxwell’s 
equations, the choice of technique depending on the 
particular circumstances [1]. This paper focuses on the 
finite difference time domain (FDTD) method and 
applies it to the design of a capacitor. 
   The FDTD algorithm is the most popular method for 
transient electromagnetic simulation. It is easy to 
understand, easy to implement in software, and since it 
is a time-domain technique, it can cover a wide 
frequency range with a single simulation run. [2].  
   The purpose of this article is to introduce a particular 
implementation of the FDTD program in the object-
oriented programming language Java [3].  The program 
was originally developed as one in a library of codes for 
simulating the electromagnetic fields in capacitor 
structures [4-6] and we use the example of a capacitor 
structure in this paper to demonstrate the program. The 
program is made available as open source5, 6. 
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2 The FDTD Method 
The FDTD method, in its most straightforward and 

popular form, was introduced in Yee [7]. The domain of 
interest is divided into a grid of cubes and the electric 
field (E) at the centres of each of the faces is related to 
the magnetic field (H) of the pervious half time-step. In 
the same way, a similar grid is formed, with the cubes 
being a half pitch away in space and time, but this time 
updating the magnetic field using the electric field of 
the previous half time step. Using the two meshes 
alternatively, and starting from time t=0, we can step 
forward in time, applying any excitation by setting 
certain values within the domain at each time step. 

Note that the domain of interest, mentioned earlier, is 
generally a truncation of the true domain. This is often a 
necessary approximation, but should not adversely 
affect the model if the main electromagnetic activity is 
known to occur reasonably within the applied domain. 
For the FDTD, the applied domain is most likely to be 
cuboidal, given that Yee’s method involves dividing the 
E and H fields into grids of cubes.  

Because of the artificial boundaries introduced in the 
application of the method, non-physical reflections of 
the electromagnetic signals tend to occur. There are a 
number of methods for reducing reflections from the 
applied boundary of the domain of interest. In this work 
the simplest of these methods was applied, that of a first 
order Mur boundary condition [8]. 
   The materials need to be specified throughout the 
applied domain. Typically, the material will be either 
free-space (air), metal, or dielectrics, any material can be 
used, as long as the properties of permeability, 
permittivity, and conductivity can be specified. [2] 
   Once the computational domain and the grid material 
are established, the excitation or source is specified. The 
source can be an impinging plane wave, a current on a 
wire, or a potential difference. Since the E and H fields 
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are determined directly, the output of the simulation is 
usually the E or H field at a point or a series of points 
within the computational domain, or the E of H field at 
certain points, viewed with respect to time. [2] 
 

3 FDTD Software Design 
  The FDTD Java code has been developed with object-
oriented design principles. In general this means that we 
separate responsibilities for different parts of the method 
or different data structure to different objects, using the 
object-oriented techniques of abstraction, composition 
and inheritance. A UML class diagram of the FDTD 
code is given in Figure 1. Further information is given 
through viewing the codes [12, 13 Academic Report 
AR-08-17]. 
 

 
Figure 1. UML diagram of the FDTD program. 

 
The code was originally developed by Stephen 
Kirkup[4]; it was then re-designed by Goodchild Ndou 
[9] and has now been revised further by Irfan Mulla [11] 
to bring it up to be released (Mark 2) as open source. 

 
4 How to use the FDTD software 
The FDTD code can simulate the electric field evolution 
in any cuboidal domain. The total package consists of a 
pre-processor which inputs a text data file and produces 
the electric field data files on the three central cross-
sections of the domain. The text data file allows the user 
to define the material components of the 
electromagnetic domain. The components need to be 
defined as cuboids and the components can appear (and 
disappear) at defined times. The data file also allows the 
user to define voltage excitations within the domain. 
The package also includes a post-processor which reads 
in the electric field and outputs it to the screen. 
    

 

4.1 Test Problem 
  The electromagnetic problem is set up by the user 
through completing an input file. A reasonably wide 
range of structures along with DC voltage sources can 
be defined. The input file is a .dat file.  Open up the file 
experiment.dat (a text file e.g. with Notepad, 
WordPad).The experiment.dat file is a data file to 
describe structure, mesh and excitation used in 3D finite 
difference time method (FDTD). The file will be used 
throughout this manual to illustrate the functionality of 
3D FDTD code. 
   For this example, the input file represents a stack of 
two capacitors, side-by-side, and has six inputs; the file 
has the name experiment.dat. To illustrate how a 
particular program may be described and run, we will 
consider the problem illustrated in Figure 2. 
 
 
 
 
 
 
 
 
 
 

Figure 2. Linked capacitor problem. 
 
The example structure consists of four aluminium plates 
of dimensions 2mm x 0.1mm x 1mm of equal distance 
apart (1mm) lying in a polythene medium. An 
aluminium fusegate extends and connects the plates. For 
more information on capacitor design see Kirkup [6] 
and the relevant references therein. 
A voltage excitation Ey is placed between each pair of 
wires (in the example the voltage source is modelled by 
a polythene strip over which the Ey =1000 is set so the 
voltage across each pair of plates is 1 V). The example 
is described as experiment.dat 
 
4.2 Input file for test problem 
The input file, describing the test problem, is made up 
as follows. 
[1]Name of Structure 
In order to set up a particular electromagnetic problem, 
the user simply needs to insert the relevant numbers in 
the input file. One line 6 you can place name of the 
structure in text.  
For the example, the name of the structure is called 
“Capacitor 2 pairs of plates” 
 
 
 
 

V

V

V

V

V

V

MATHEMATICAL METHODS, COMPUTATIONAL TECHNIQUES, NON-LINEAR SYSTEMS, INTELLIGENT SYSTEMS

ISSN: 1790-2769 371 ISBN: 978-960-474-012-3



[2] Materials 
The materials that make up the structure and their 
properties must be defined. The first line states the name 
of the material and the second line states the properties 
of the material i.e. Conductivity, Relative Permittivity 
and Susceptibility (in that order). 
In the example, the domain consists of two materials: 
polythene and aluminium. The properties for the 
material polythene are as follows 
Conductivity=0.0000000001, Relative 
Permittivity=2.25, Susceptibility=0.0. The properties 
for the material Aluminium are as follows 
Conductivity=35400000, Relative Permittivity=1.0, 
Susceptibility=0.000022   
[3]Dimensions of the cuboidal electromagnetic domain 
The domain is a cuboid with one corner at the origin. 
The dimensions here give the length [X] width [Y] and 
height [Z] in x, y and z co-ordinates. The 
electromagnetic domain is then [0     X, 0     Y, 0     Z]. 
The whole electromagnetic domain is illustrated in 
Figure 3. 

 
Figure 3. The cuboidal domain. 

 
In the example, the domain is [0     0.028, 0      0.00050, 
0      0.0014] 
[4]Mesh 
The mesh is made of cubic Yee cells which ideally 
should fit easily into dimensions, so that you have a 
finite number of cubes in each dimension 
In this example, the domain is made of Yee cells of size 
0.00002 
[5]Material Distribution 
The complete domain must be defined as a distribution 
of materials. Originally it is assumed that the domain is 
made up of material 1: this is the background material. 
However the background material can be overwritten by 
cuboidal components of other material (or the 
background material (no 1)). You can have as many 
such components as you want, the number of 
components must be stated. They must be listed one by 
one as shown with the information of the material index 
from which the component is composed and the region 
[x1       x2, y1       y2, z1      z2] that is made up of the 
material. 
In the example above, the background material is 
polythene. There are four plates of material 
(components 1-4) and six thin strips of material (of one 

or two cells thick) which constitute wires that extend 
from plates (5-10). The wires are joined up, each pair 
by a thin line of polythene (11-16). 
[6]Duration of Simulation 
The time (in seconds) over which the simulation runs is 
stated. This is the physical time, related to the 
electromagnetism. 
In the example, the duration of simulation is 
0.00000000005 seconds. 
[7] Excitation 
Each component can be assigned a voltage excitation. 
The components are listed within the voltage source 
defined. If a zero value is placed it is taken to mean that 
there is no voltage excitation.  
In the example, a voltage excitation is placed on the 
polythene strips (components 11-16). Ey = 1000.0, so 
the voltage is 1V. 
 

4.3 4.3 Java Programs and executing the software 
  The software is written in Java. Java is a free 
programming language. It can be downloaded from the 
website (http://java.sun.com)[3]. 
   To download the java compiler (for computers 
running windows) first go to the above website in the 
browser. Click on the option Products. Then click on 
Download NetBeans IDE. It will give you numerous 
NetBeans IDE bundles options for downloading. Click 
on the Java SE download option. Download the file and 
follow instructions to install file. 
  The main codes of the FDTD package come into files 
• Pre-processor: FDTDpre.java 
• Post-processor: FDTDpost.java 
  The pre-processor takes the input electromagnetic 
problem, computes the electric field and saves results to 
hard disk. The post-processor takes the computed 
electric fields form the hard disk and displays it on the 
screen. FDTDPre.java also links to a number of other 
classes, as shown in the class diagram in section 3. 
When the .java files are compiled they become .class 
files, FDTDpre and FDTDpost are then ready to be 
executed. 
  The pre-processor takes the input data from the file 
experiment.dat and computes the electric and magnetic 
fields at the defined time steps. On completion of the 
execution of the pre-processor the output file x.out, 
y.out, z.out is produced. These files correspond to the 
electric field strengths on the central cross-sections of 
the domain; in the y-z plane, x-z plane and x-y plane. 
  The post-processor is to be run after the pre-processor 
has completed execution. The user is asked whether you 
want to view the results on the y-z plane, x-y plane. 
Following on from the answer to that question one of 
the files x.out, y.out, z.out is input and the results are 
displayed. 
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Monitoring File 
  It is possible that the pre-processor does not work as 
expected then there may be errors in the input file. Or 
you may wish to know how many time steps you have 
to wait before the execution is completed. After the 
preliminary seconds of the post-processing, the data 
pertaining to job is stored in the monitor or .mon file. 
If the program is executing but the results are not as 
expected, then the monitor file is the first place to look 
and find out where the problem may have originated. 
Errors 
  There are necessary limits on the size of the data 
structures that are included in the program, so that the 
software will fit in the given memory. Often the input 
problem will fit within these limits, but the limits may 
need to be changed by intervention into java codes by 
the user. Such changes are simple to perform. If such 
intervention occurs then the codes will need to be re-
compiled. 
  Generally such problems will be flagged when you try 
to execute the programs. For example, you may get a 
message saying that “MaxNz is too small” and you will 
then have to intervene in the Java and increase MaxNx. 
 

5 Results and Visualisation 
  The pre-processor FDTDpre produces data output, 
with some monitoring information direct to the screen 
and to main results to the *.out files. The post-processor 
FDTDpost reads the *.out files and produces a 
visualisation of the evolving electromagnetic field. 
 
5.1 Output from FDTDpre 
  The useful output from FDTDpre – such as the electric 
field strength in the central cross-sectional x-, y- and z- 
planes are stored in .dat files.  Some direct screen output 
is produced whilst FDTDpre is running in order to keep 
the user informed. An example of screen output that is 
produced when the FDTDpre processor is run is shown 
below:- 
 
Reading Input File 
MaxNtout = 1000 
Nt = 1428 
Ntout = 714 
Sending information to the monitoring file 
experiment.mon 
Initialise E,H data structures to zero 
1 
Setting Up Material Property Data Structures 
Material changes 
Computing H 
Mur Correction in H 
Apply Excitation 
5.115907697472721E-12 

Computing E 
truetruetruetruetruetruetruetruetruetruetruetruetruetrue
truetruefalse 

[11] 
The final line of true/false tells us which material 
components are in effect on each time step. 
 
5.2 Output from FDTDpost 
  The FDTD post-processor reads the data files produced 
by FDTDpre and plots the evolving electric field to the 
screen. The following plots show the final outputs from 
the FDTD postprocessor in the horizontal cross 
sectional plane of the test problem. The results show the 
electric field strength. A colour scheme is used to 
illustrate the electric field strength. The colour ranges 
from white (low) to magenta (medium) to red (high).  
  After the FDTDpre processor has finished the 
computation and stored the results the FDTDpost 
processor is ran to see a visualisation of the results.    
When the FDTD processor is run the following is given 
in the output window:- 
Plane x = Plane y-z 
Plane y = Plane x-z 
Plane z = Plane x-y 
Which plane (x, y, or z)? 
 
The user chooses the plane that they wish to run. In this 
example Plane y is chosen. The output given is 
illustrated in Figure 4 at a set of time steps multiples (K) 
with the whole simulation taking about 15minutes on a 
standard modern PC:- 

 
At K=9 the six voltage inputs are shown 

 

 
At K=62 the two capacitors are beginning to charge 
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At K=150 the two capacitors are partially charged. 

 
 

 
At K=260 the charge on the capacitors is increasing 

 
 

 
At K=405 the charge on the capacitors is increasing 

 
 

 
At K=434 the discharge channel in the first capacitor is 

visible 
 
 

 

 
At K=461 the discharge is spreading 

 
 

 
At K=501 the charge on the left capacitor is clearly less 

than the charge on the right capacitor 
 

 
At K=534 the charge on the left capacitor is weakened 

 
 

 
At K =573 the charge on the left capacitor is very low. 
There are some oscillations in the charge following this 

 
Figure 4. Evolving electric field strength. 
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4 Conclusion 
  In this paper the revised Mark 2  open source object-
oriented Java FDTD program has been reported. It has 
been shown how a material domain and excitation can 
be defined in the .dat file, how the pre-processor 
FDTDpre reads the .dat file, carries out the computation 
of the electric and a magnetic field forward in time and 
sends the results to a set of .out files. It has been shown 
how the post-processor FDTDpost reads the .out files 
and produces a visualisation of the electric field 
strength. The program has been applied to a test 
problem of a capacitor structure with a change in 
materials to simulate a discharge channel (an inherent 
problem in capacitor design) and screenshots of the 
evolving field produced by FDTDpost are given.  
  There is no functional or efficiency improvement from 
Mark1 to Mark 2; the big change is the design of the 
code. The improved object-oriented design makes 
upgrading the software more straightforward. There are 
a number of areas in which the code can be improved. 
(i) Firstly, the method of defining the material domain 
and excitation could be improved; perhaps replacing the 
.dat file by a graphical user interface. (ii) A wider range 
of choices of output and a technique for allowing this in 
the software. (iii) Further consideration of and therefore 
possible improvements to the visualisation of the output. 
(iv) There are still aspects on the object-oriented design 
that could be reviewed.  
  As a final potential improvement, the code could be 
used on larger problems, that is larger domains or 
higher resolution of Yee cells or longer time evolution 
of higher resolution of time steps. However, in order to 
make progress in this direction, further consideration of 
the efficiency of the program would be needed. The 
code could be speeded up through using parallel or 
cluster machines [14] and through further consideration 
of the distribution of the objects. 
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