
 Electromagnetic Simulation by the FDTD method in Java

STEPHEN KIRKUP, IRFAN MULLA, GOODCHILD NDOU and JAVAD YAZDANI
East Lancashire Institute of Higher Education (ELIHE)

Blackburn College
Blackburn, Lancashire
UNITED KINGDOM

Abstract: - The FDTD (Finite Difference Time Domain) is the most popular method for transient electromagnetic
simulation. A FDTD method is developed through applying Yee’s algorithm and a Mur boundary condition. The
method is implemented in Java using object-oriented design principles. The program can simulate and visualize an
evolving electromagnetic field in any cuboidal, multiple material domain. The program is made available as open
source from www.east-lancashire-research.org.uk (AR-08-17).

Keywords— FDTD, Electromagnetic

1 Introduction
 Electromagnetic fields are governed by Maxwell’s
equations. Through developing a computational model,
electromagnetic fields can be simulated on computer
and results can be visualised. The design of electrical
components can be analysed through the application of
computational methods. There are a number of
techniques for the numerical solution of Maxwell’s
equations, the choice of technique depending on the
particular circumstances [1]. This paper focuses on the
finite difference time domain (FDTD) method and
applies it to the design of a capacitor.
 The FDTD algorithm is the most popular method for
transient electromagnetic simulation. It is easy to
understand, easy to implement in software, and since it
is a time-domain technique, it can cover a wide
frequency range with a single simulation run. [2].
 The purpose of this article is to introduce a particular
implementation of the FDTD program in the object-
oriented programming language Java [3]. The program
was originally developed as one in a library of codes for
simulating the electromagnetic fields in capacitor
structures [4-6] and we use the example of a capacitor
structure in this paper to demonstrate the program. The
program is made available as open source5, 6.

Manuscript received on Aug 30th 2008. This work was supported in part by
ELIHE, Blackburn College1. Stephen Kirkup, Javad Yazdani and Irfan Mulla2
are with the School of Science and Technology, ELIHE1, Blackburn College
UK. Goodchild Ndou3 is with the Department of Computing, University of
Lancaster4. The codes associated with this paper can be downloaded from the
web pages below5, 6.
1 www.elihe.ac.uk
2 BSc (Hons) Computing Student, ELIHE
3 BSc (Hons) Computing Graduate, ELIHE
4 www.lancs.ac.uk
5 www.east-lancashire-research.org.uk
6 www.kirkup.info/opensource

2 The FDTD Method
The FDTD method, in its most straightforward and

popular form, was introduced in Yee [7]. The domain of
interest is divided into a grid of cubes and the electric
field (E) at the centres of each of the faces is related to
the magnetic field (H) of the pervious half time-step. In
the same way, a similar grid is formed, with the cubes
being a half pitch away in space and time, but this time
updating the magnetic field using the electric field of
the previous half time step. Using the two meshes
alternatively, and starting from time t=0, we can step
forward in time, applying any excitation by setting
certain values within the domain at each time step.

Note that the domain of interest, mentioned earlier, is
generally a truncation of the true domain. This is often a
necessary approximation, but should not adversely
affect the model if the main electromagnetic activity is
known to occur reasonably within the applied domain.
For the FDTD, the applied domain is most likely to be
cuboidal, given that Yee’s method involves dividing the
E and H fields into grids of cubes.

Because of the artificial boundaries introduced in the
application of the method, non-physical reflections of
the electromagnetic signals tend to occur. There are a
number of methods for reducing reflections from the
applied boundary of the domain of interest. In this work
the simplest of these methods was applied, that of a first
order Mur boundary condition [8].
 The materials need to be specified throughout the
applied domain. Typically, the material will be either
free-space (air), metal, or dielectrics, any material can be
used, as long as the properties of permeability,
permittivity, and conductivity can be specified. [2]
 Once the computational domain and the grid material
are established, the excitation or source is specified. The
source can be an impinging plane wave, a current on a
wire, or a potential difference. Since the E and H fields

MATHEMATICAL METHODS, COMPUTATIONAL TECHNIQUES, NON-LINEAR SYSTEMS, INTELLIGENT SYSTEMS

ISSN: 1790-2769 370 ISBN: 978-960-474-012-3

are determined directly, the output of the simulation is
usually the E or H field at a point or a series of points
within the computational domain, or the E of H field at
certain points, viewed with respect to time. [2]

3 FDTD Software Design
 The FDTD Java code has been developed with object-
oriented design principles. In general this means that we
separate responsibilities for different parts of the method
or different data structure to different objects, using the
object-oriented techniques of abstraction, composition
and inheritance. A UML class diagram of the FDTD
code is given in Figure 1. Further information is given
through viewing the codes [12, 13 Academic Report
AR-08-17].

Figure 1. UML diagram of the FDTD program.

The code was originally developed by Stephen
Kirkup[4]; it was then re-designed by Goodchild Ndou
[9] and has now been revised further by Irfan Mulla [11]
to bring it up to be released (Mark 2) as open source.

4 How to use the FDTD software
The FDTD code can simulate the electric field evolution
in any cuboidal domain. The total package consists of a
pre-processor which inputs a text data file and produces
the electric field data files on the three central cross-
sections of the domain. The text data file allows the user
to define the material components of the
electromagnetic domain. The components need to be
defined as cuboids and the components can appear (and
disappear) at defined times. The data file also allows the
user to define voltage excitations within the domain.
The package also includes a post-processor which reads
in the electric field and outputs it to the screen.

4.1 Test Problem
 The electromagnetic problem is set up by the user
through completing an input file. A reasonably wide
range of structures along with DC voltage sources can
be defined. The input file is a .dat file. Open up the file
experiment.dat (a text file e.g. with Notepad,
WordPad).The experiment.dat file is a data file to
describe structure, mesh and excitation used in 3D finite
difference time method (FDTD). The file will be used
throughout this manual to illustrate the functionality of
3D FDTD code.
 For this example, the input file represents a stack of
two capacitors, side-by-side, and has six inputs; the file
has the name experiment.dat. To illustrate how a
particular program may be described and run, we will
consider the problem illustrated in Figure 2.

Figure 2. Linked capacitor problem.

The example structure consists of four aluminium plates
of dimensions 2mm x 0.1mm x 1mm of equal distance
apart (1mm) lying in a polythene medium. An
aluminium fusegate extends and connects the plates. For
more information on capacitor design see Kirkup [6]
and the relevant references therein.
A voltage excitation Ey is placed between each pair of
wires (in the example the voltage source is modelled by
a polythene strip over which the Ey =1000 is set so the
voltage across each pair of plates is 1 V). The example
is described as experiment.dat

4.2 Input file for test problem
The input file, describing the test problem, is made up
as follows.
[1]Name of Structure
In order to set up a particular electromagnetic problem,
the user simply needs to insert the relevant numbers in
the input file. One line 6 you can place name of the
structure in text.
For the example, the name of the structure is called
“Capacitor 2 pairs of plates”

V

V

V

V

V

V

MATHEMATICAL METHODS, COMPUTATIONAL TECHNIQUES, NON-LINEAR SYSTEMS, INTELLIGENT SYSTEMS

ISSN: 1790-2769 371 ISBN: 978-960-474-012-3

[2] Materials
The materials that make up the structure and their
properties must be defined. The first line states the name
of the material and the second line states the properties
of the material i.e. Conductivity, Relative Permittivity
and Susceptibility (in that order).
In the example, the domain consists of two materials:
polythene and aluminium. The properties for the
material polythene are as follows
Conductivity=0.0000000001, Relative
Permittivity=2.25, Susceptibility=0.0. The properties
for the material Aluminium are as follows
Conductivity=35400000, Relative Permittivity=1.0,
Susceptibility=0.000022
[3]Dimensions of the cuboidal electromagnetic domain
The domain is a cuboid with one corner at the origin.
The dimensions here give the length [X] width [Y] and
height [Z] in x, y and z co-ordinates. The
electromagnetic domain is then [0 X, 0 Y, 0 Z].
The whole electromagnetic domain is illustrated in
Figure 3.

Figure 3. The cuboidal domain.

In the example, the domain is [0 0.028, 0 0.00050,
0 0.0014]
[4]Mesh
The mesh is made of cubic Yee cells which ideally
should fit easily into dimensions, so that you have a
finite number of cubes in each dimension
In this example, the domain is made of Yee cells of size
0.00002
[5]Material Distribution
The complete domain must be defined as a distribution
of materials. Originally it is assumed that the domain is
made up of material 1: this is the background material.
However the background material can be overwritten by
cuboidal components of other material (or the
background material (no 1)). You can have as many
such components as you want, the number of
components must be stated. They must be listed one by
one as shown with the information of the material index
from which the component is composed and the region
[x1 x2, y1 y2, z1 z2] that is made up of the
material.
In the example above, the background material is
polythene. There are four plates of material
(components 1-4) and six thin strips of material (of one

or two cells thick) which constitute wires that extend
from plates (5-10). The wires are joined up, each pair
by a thin line of polythene (11-16).
[6]Duration of Simulation
The time (in seconds) over which the simulation runs is
stated. This is the physical time, related to the
electromagnetism.
In the example, the duration of simulation is
0.00000000005 seconds.
[7] Excitation
Each component can be assigned a voltage excitation.
The components are listed within the voltage source
defined. If a zero value is placed it is taken to mean that
there is no voltage excitation.
In the example, a voltage excitation is placed on the
polythene strips (components 11-16). Ey = 1000.0, so
the voltage is 1V.

4.3 4.3 Java Programs and executing the software
 The software is written in Java. Java is a free
programming language. It can be downloaded from the
website (http://java.sun.com)[3].
 To download the java compiler (for computers
running windows) first go to the above website in the
browser. Click on the option Products. Then click on
Download NetBeans IDE. It will give you numerous
NetBeans IDE bundles options for downloading. Click
on the Java SE download option. Download the file and
follow instructions to install file.
 The main codes of the FDTD package come into files
• Pre-processor: FDTDpre.java
• Post-processor: FDTDpost.java
 The pre-processor takes the input electromagnetic
problem, computes the electric field and saves results to
hard disk. The post-processor takes the computed
electric fields form the hard disk and displays it on the
screen. FDTDPre.java also links to a number of other
classes, as shown in the class diagram in section 3.
When the .java files are compiled they become .class
files, FDTDpre and FDTDpost are then ready to be
executed.
 The pre-processor takes the input data from the file
experiment.dat and computes the electric and magnetic
fields at the defined time steps. On completion of the
execution of the pre-processor the output file x.out,
y.out, z.out is produced. These files correspond to the
electric field strengths on the central cross-sections of
the domain; in the y-z plane, x-z plane and x-y plane.
 The post-processor is to be run after the pre-processor
has completed execution. The user is asked whether you
want to view the results on the y-z plane, x-y plane.
Following on from the answer to that question one of
the files x.out, y.out, z.out is input and the results are
displayed.

MATHEMATICAL METHODS, COMPUTATIONAL TECHNIQUES, NON-LINEAR SYSTEMS, INTELLIGENT SYSTEMS

ISSN: 1790-2769 372 ISBN: 978-960-474-012-3

Monitoring File
 It is possible that the pre-processor does not work as
expected then there may be errors in the input file. Or
you may wish to know how many time steps you have
to wait before the execution is completed. After the
preliminary seconds of the post-processing, the data
pertaining to job is stored in the monitor or .mon file.
If the program is executing but the results are not as
expected, then the monitor file is the first place to look
and find out where the problem may have originated.
Errors
 There are necessary limits on the size of the data
structures that are included in the program, so that the
software will fit in the given memory. Often the input
problem will fit within these limits, but the limits may
need to be changed by intervention into java codes by
the user. Such changes are simple to perform. If such
intervention occurs then the codes will need to be re-
compiled.
 Generally such problems will be flagged when you try
to execute the programs. For example, you may get a
message saying that “MaxNz is too small” and you will
then have to intervene in the Java and increase MaxNx.

5 Results and Visualisation
 The pre-processor FDTDpre produces data output,
with some monitoring information direct to the screen
and to main results to the *.out files. The post-processor
FDTDpost reads the *.out files and produces a
visualisation of the evolving electromagnetic field.

5.1 Output from FDTDpre
 The useful output from FDTDpre – such as the electric
field strength in the central cross-sectional x-, y- and z-
planes are stored in .dat files. Some direct screen output
is produced whilst FDTDpre is running in order to keep
the user informed. An example of screen output that is
produced when the FDTDpre processor is run is shown
below:-

Reading Input File
MaxNtout = 1000
Nt = 1428
Ntout = 714
Sending information to the monitoring file
experiment.mon
Initialise E,H data structures to zero
1
Setting Up Material Property Data Structures
Material changes
Computing H
Mur Correction in H
Apply Excitation
5.115907697472721E-12

Computing E
truetruetruetruetruetruetruetruetruetruetruetruetruetrue
truetruefalse

[11]
The final line of true/false tells us which material
components are in effect on each time step.

5.2 Output from FDTDpost
 The FDTD post-processor reads the data files produced
by FDTDpre and plots the evolving electric field to the
screen. The following plots show the final outputs from
the FDTD postprocessor in the horizontal cross
sectional plane of the test problem. The results show the
electric field strength. A colour scheme is used to
illustrate the electric field strength. The colour ranges
from white (low) to magenta (medium) to red (high).
 After the FDTDpre processor has finished the
computation and stored the results the FDTDpost
processor is ran to see a visualisation of the results.
When the FDTD processor is run the following is given
in the output window:-
Plane x = Plane y-z
Plane y = Plane x-z
Plane z = Plane x-y
Which plane (x, y, or z)?

The user chooses the plane that they wish to run. In this
example Plane y is chosen. The output given is
illustrated in Figure 4 at a set of time steps multiples (K)
with the whole simulation taking about 15minutes on a
standard modern PC:-

At K=9 the six voltage inputs are shown

At K=62 the two capacitors are beginning to charge

MATHEMATICAL METHODS, COMPUTATIONAL TECHNIQUES, NON-LINEAR SYSTEMS, INTELLIGENT SYSTEMS

ISSN: 1790-2769 373 ISBN: 978-960-474-012-3

At K=150 the two capacitors are partially charged.

At K=260 the charge on the capacitors is increasing

At K=405 the charge on the capacitors is increasing

At K=434 the discharge channel in the first capacitor is

visible

At K=461 the discharge is spreading

At K=501 the charge on the left capacitor is clearly less

than the charge on the right capacitor

At K=534 the charge on the left capacitor is weakened

At K =573 the charge on the left capacitor is very low.
There are some oscillations in the charge following this

Figure 4. Evolving electric field strength.

MATHEMATICAL METHODS, COMPUTATIONAL TECHNIQUES, NON-LINEAR SYSTEMS, INTELLIGENT SYSTEMS

ISSN: 1790-2769 374 ISBN: 978-960-474-012-3

4 Conclusion
 In this paper the revised Mark 2 open source object-
oriented Java FDTD program has been reported. It has
been shown how a material domain and excitation can
be defined in the .dat file, how the pre-processor
FDTDpre reads the .dat file, carries out the computation
of the electric and a magnetic field forward in time and
sends the results to a set of .out files. It has been shown
how the post-processor FDTDpost reads the .out files
and produces a visualisation of the electric field
strength. The program has been applied to a test
problem of a capacitor structure with a change in
materials to simulate a discharge channel (an inherent
problem in capacitor design) and screenshots of the
evolving field produced by FDTDpost are given.
 There is no functional or efficiency improvement from
Mark1 to Mark 2; the big change is the design of the
code. The improved object-oriented design makes
upgrading the software more straightforward. There are
a number of areas in which the code can be improved.
(i) Firstly, the method of defining the material domain
and excitation could be improved; perhaps replacing the
.dat file by a graphical user interface. (ii) A wider range
of choices of output and a technique for allowing this in
the software. (iii) Further consideration of and therefore
possible improvements to the visualisation of the output.
(iv) There are still aspects on the object-oriented design
that could be reviewed.
 As a final potential improvement, the code could be
used on larger problems, that is larger domains or
higher resolution of Yee cells or longer time evolution
of higher resolution of time steps. However, in order to
make progress in this direction, further consideration of
the efficiency of the program would be needed. The
code could be speeded up through using parallel or
cluster machines [14] and through further consideration
of the distribution of the objects.

Acknowledgement
 The evolving FDTD code has been used by the first
author in an Assignment on the BSc Computing (Hons)
module Object-Oriented Development and the Unified
Modelling Language over a number of years. The first
author would like to thank all the students for their
evaluation of the code; many of the comments have been
taken on board. Of particular note were the contributions
of Paul Sutcliffe, Chris Seaton, Dan Martin, Paul
Threlfall and Katrinna MacFarlane.

References:

[1] S. Wiak, A Krawczyk, M. Trlep

Computer Engineering in Applied Electromagnetism,
Springer Netherlands (2005).

[2] Inkyu Park, Finite Difference FDTD technique,
http://www.pas.rochester.edu/~icpark/Vinos/whatisfdt
d.html. Accessed August 2008

 [3] www.java.sun.com, it is free to download the Java
compiler. Accessed August 2008

[4] S. M. Kirkup, Yi Huang, G. R. Jones and H. M.
Looe, Capacitor Modelling by FDTD, Proceedings
of the IASTED International Conference on Power
and Energy Systems, July 3-6, 2001, Rhodes, Greece.
(2001). Available [11].

[5] A. J. Mariani, S. M. Kirkup, Y. Huang and G. R.
Jones, On coupling electromagnetic fields and lumped
circuits with TLM, Applied Mathematical Modelling,
26(3) , 2002, 377-396. Available [10].

 [6] S. M. Kirkup, DC capacitor simulation by the
boundary element method, Comm. in Num. Meth. in
Eng. 23(9), 855 - 869, 2007. Available [10].
Academic report AR-07-02, East Lancashire
Research, ELIHE, Blackburn College. Available [13]

[7] K. S. Yee, Numerical solution of initial boundary
value problems involving Maxwell’s equations in
isotropic media, IEEE Trans. Antennas Propagat. AP-
14, 302-307, 1966.

[8] G. Mur, Absorbing boundary conditions for the finite-
difference approximation of the time-domain
electromagnetic-field equations, IEEE Trans. on
Electromagnetic Compatibility, EMC-23(4), 1981.

[9] G. Ndou, FDTD, BSc (Hons) Computing Projects
2006, Unpublished.

[10] I.Mulla, Finite Difference Time Domain (FDTD)
technique, BSc (Hons) Computer Systems
Engineering Advanced Project 2008, Unpublished.

[11] www.kirkup.info/papers
[12] www.kirkup.info/opensource
[13] www.east-lancashire–research.org.uk
[14] V. Holmes and T. McDonough, The ELIHE High-

Performance Cluster, presented at the IPSI conference
in London 2006. Academic Report AR-08-04, East
Lancashire Research, ELIHE, Blackburn College.
Available [13].

MATHEMATICAL METHODS, COMPUTATIONAL TECHNIQUES, NON-LINEAR SYSTEMS, INTELLIGENT SYSTEMS

ISSN: 1790-2769 375 ISBN: 978-960-474-012-3

