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Abstract: - This paper presents a variation of a Kohonen self organizing feature map. From the proposed algorithm possible 
performance improvements are investigated in terms of time and space complexity taking advantage from a sparse input data 
set. The proposed variation has been tested on different datasets coming from case studies in the field of bioinformatics. The 
improvements make the application of the algorithms feasible to massive document collections. The application of the 
proposed improvements for grid implementations could be beneficial to reduce the computing element demand. 
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1 Introduction 
Clustering algorithms are playing a central role in data 
analysis and exploration. This is true in almost every field 
of science. In fact,  nowadays the amount of data produced 
and stored is surprisingly increasing especially  in life 
science and in gene expression  data  collected by 
microarray experiments [1, 2].  
To overcome the increasing computational demand coming 
from the exponentially rising volume of data generated and, 
eventually, by the change in space representation (from 
feature to similarity space representation) the paper 
proposes and evaluates some performance improvements in 
terms of computational time and space. These 
improvements are more effective on sparse datasets. The 
results in terms of execution time reduction and 
concordance between the clusters obtained by the improved 
algorithms against the Kohonenn algorithm without 
performance improvement, which has been taken as 
reference point, are presented and evaluated. 
The paper is organized as follows: section 2 briefly recalls  
the Kohonen self organizing feature map algorithms; 
section 3 revises the literature about fast implementation of 
the Kohonen algorithms; section 4 describes some 
implementations of fast Kohonen algorithm and compares 
the results for  exact and approximate algorithms; section 5 
draws some conclusions and  feature works. 
 
 
2 Brief review of the SOM algorithm 
Kohonen Self Organizing Maps (SOM)  are often used to 
cluster datasets in an unsupervised manner [3, 4, 5]. This 
paper deals with on–line SOM since the batch version has 
some disadvantages  such as the fact that  it often represents 
an approximation of the on–line algorithm [6]. 
In the on–line version the weights are updated after the 
presentation of each input vector. In order to do this, the 

distance (usually the Euclidean distance) is computed 
between the input vector and each weight vector as in (1).  
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where no is the number of output neurons.  
In the second step the algorithm searches for the winning 
neuron, dw,, i.e., the neuron that best matches the input 
neuron and is characterized by the minimum distance from 
the input vector 
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In the third phase the algorithm updates the weights of the 
winning neuron and of the neurons that lie in a user defined 
neighborhood as follows 
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where α(t) is the learning rate that modulates the  weight 
update, and hkw is the neighborhood function that depends, 
given a time t, on the winning neuron w and the neuron 
under consideration k.   
Usually the output neurons are arranged in a bi-dimensional 
array; however, some implementations have been proposed 
which adopt a different topology of the network where  the 
output neurons are arranged along a single layer (SL 
configuration) [7, 8].  
In the SL configuration the network topology is composed 
of an input layer with as many nodes as the number of 
components of the input element, and an output layer with 
as many nodes as the number of classes.  
This means that if, at the final cycle,  the winning neuron 
mostly activated by the ith item is the jth neuron, then the 
input object belongs to the class j.  
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In this scenery there is no topological similarity among 
output neurons since adjacent output neurons do not 
necessarily represent similar classes.  
Let us note that in the SL configuration the updating 
formula (3) is replaced by   a neighborhood function that 
chooses the winning neurons and the ones (usually two o 
three neurons) that are mostly activated by the current input 
object. The neighborhood function is not a topological  but 
a logical one that finds the output neurons closer to the 
input vector. 
As neighborhood function the following one has been 
proposed in [7]:  
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where ord (k) is the rank of weight vector k in the ordered 
vector of distance computed with formula 1). 
The SL clustering algorithms work on both the feature and 
the similarity space as proposed in In [7, 8]. If the similarity 
space is considered,  the algorithm allows us to perform a 
final step in which, for each class, it is possible to find both 
the most relevant features  common to the majority of class 
elements, called positive features, and the features not 
present in the majority of class elements, called negative 
features. 
An automatic strategy to find the optimal number of classes 
is also proposed in [7, 8]. 
 
 

3 Reviews of performance improvements 
of the Kohonen SOM algorithms 

Some algorithms  belonging to the Kohonen family (here on 
referred to as Kohonen–like algorithms can be summarized 
by the following three phases:  
Phase D: it computes the distance between input  and 
weight vector by equation (1); 
Phase W: it computes the winning neuron by equation (2) 
Phase U: it updates the weight by equation  (3) using 
equation (4) for the neighbourhood.  
The computational complexity of each iteration of our 
version of the  on-line Kohonen algorithm without any 
optimization is :  

1. Phase D: O(N2 * no) 
2. Phase W : O(N * (no * log (no))) since the 

vector of distances must ordered if all the 
output neurons should be updated  
according to their rank. 

3. Phase U:  O (N2 * no) 
where N is the number of  input elements, no is the number 
of classes or output neurons. The analysis is performed for a 
classification step involving the similarity matrix that has a 
dimension of  N x N. 
In literature several  studies concerning performance 
improvements of the Kohonen like algorithm can be found.   

In [9] the authors propose the use of spatial indexing 
method such as R-Tree in order to speed up  the search of 
the winning neuron to reduce  the cost from O(no) to logm 
(no) where m is the node size.  
In [10] the authors propose a fast implementation for a 
batch version of the standard Kohonen algorithm.  The 
optimization they propose has the following computational 
complexity for the various phases of the Kohonen 
algorithm: 

1) Phase D: O(no* (N * fnon zero) 
2)  

2) Phase W: O ( no) 
3) Update weight O (no * N * fnon zero

 ) 
where fnonzero  is the percentage of elements different from 
zero in the input matrix. Their implementation takes 
advantage from the batch implementation and from a 
different arrangement of equation (1) so that in computing 
the distance in equation 1 only the elements of x different 
from zero are taken into consideration. 
This is possible since in the batch version the weights are 
updated only at the end of a phase, i.e., after the 
presentation of all the input elements, so allowing the 
weights to be pre-computed at the beginning of each epoch.  
In [11] the author proposes an on-line implementation of the 
Kohonen-like algorithm with the following computational 
complexity:  

1) Phase D, computes Distance: O(no* N2 * fnon zero))  
2) Phase W, computes Winning neuron: O (N * no) 
3) Phase U, Updates weights: O (no * N2 * fnon zero

 ) 
To achieve this result a normalized set of weight zk  is used 
such that wk = βkzk. This set of weight zk  can be updated at 
a cost proportional to the number of non-zero elements of 
the input vector. The algorithm does not update all the 
normalized weights after each presentation of an input 
vector, but only the weights corresponding to elements of 
the input vector different from zero, reducing the overall 
computational cost.  
The drawback is that in the update steps it is  necessary to 
update the normalized weights and two constant (βk and  ηk 

in the paper) with a computational cost proportional to the 
number of input components different from zero.  
Another drawback is that if the value of βk drops below a 
predefined threshold (0.01) the updating equations change 
with a computational cost that is no longer determined by 
the sparsity of the input matrix.  
In [12] the author uses an early stopping strategy in 
computing the distance between the input element and the 
output ones. In summing up the squared difference between 
the components of the ith input element and the weight 
vector ones, he stops when the summation is above the 
current minimum. In the paper it is suggested to try to start 
from the output neuron with the expected smallest distance.  
The observation that in many applications, such as speech 
recognition and image processing, successive vectors 
exhibit strong correlation, leads to the conclusion that  the 
best matching node (BMN) found for the last input can be 
the best candidate for the BMN for the successive input. 
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The author reports a percentage of CPU time saved ranging 
from 51.3 % to 56.2 % on real speech data composed of 
17,179 weighted cepstrum vectors with a dimension of 12 
components for a map size ranging from 10x10 to 20x20. .  
In [13] the author finds, for a given input vector, the new 
winner (at phase t + 1) in the vicinity of the old one (at 
phase t)  by storing the old winner in a table containing, for 
each training vector, a pointer to the winner.  
This is particularly true when the SOM is already smoothly 
ordered although not yet asymptotically stable. In searching 
for the winning neuron at phase t + 1 the author suggests to 
locate the winner for phase t in the table and to perform a 
local search for the winner in the neighbourhood around the 
located unit.  If the best match is found at the edge of this 
neighbourhood, the  search is continued in the surround of 
the preliminary best match. This principle can be used in 
both on-line and batch version of the SOM.   
The author also suggests to estimate initial value of a map 
on the basis of the asymptotic values of a map with a much 
smaller number of units.  
In [14] the authors compare the performance of a 
conventional SOM algorithm and a modification proposed 
by one of the authors. The modification consists in:  

a) selecting the first 2m +1 neurons (Nw) which best 
match the input vector; 

b) correcting the weight in the set Nw by equation 3)  
c) exchanging the weight vectors of BMU’s  

neighbors with the neurons in Nw, so that all the 
winning neurons will cluster together as neighbors 
with BMU at the centre.  

In their implementation they chose m = 2. The new 
approach is faster but less stable since the original 
neighbors around the BMU are forced to leave the original 
class and thus may disrupt the harmony elsewhere in the 
map. They report a speed up improvement ranging from 
9.68 % to 30.3 % on different datasets with a performance 
improvement that tends to increase along with the 
dimensionality of the input data. 
In [15] several optimization strategies are proposed for 
dissimilarity batch self organizing maps, e.g.,  the 
possibility to use pre computed values, a monitoring of the 
clusters that change and an   early stopping strategy in 
computing  equation 1) (they stop in computing when the 
partial sum is above the minimum). 
This last optimization however is dependent on the dataset 
and on the order of presentation of the input elements. To 
reduce this dependency they propose to first compute the 
distance of the elements which are the best candidate 
winning neurons. 
In [16] the authors extend the optimization technique by 
applying the branch and bound principle to reduce the 
expected cost of the minimization problem by avoiding an 
exhaustive search. The method introduces some 
approximations.  
The results show, as reported by the authors, that the branch 
and bound principle reduces a lot the search burden; the 

speeding up along with the number of classes increases 
although  the speeding up decreases along with the number 
of elements since the search phase has not a dominant 
computational cost. 
In [17] the authors compared several classification 
techniques that deal with large datasets by approximation 
techniques, by sampling the data sets, by randomized search 
in the solution space, or by a probabilistic parallel 
randomized search strategy implemented by genetic 
algorithms.  
In [18] the author proposes, for a batch dissimilarity SOM,  
to work on a random sample of the original data set instead 
of working on the entire one. The random sample will fit in 
main memory and will be much smaller than the original 
data set. The author uses the Chernoff  bounds to calculate 
the minimum sample size for which the sample contains, 
with high probability, at least a significant fraction  of every 
cluster.  
If the clustering algorithm on the reduced dataset finds 
small clusters, new representations for these clusters are 
searched among the remaining data. 
In [19] the authors suggest a batch learning algorithms that 
update the weights after processing 15% of the training 
examples, not only after processing all the training 
examples as requested by the batch algorithm. The proposed 
algorithm achieves about half of the acceleration of the 
batch algorithm without showing its negative effects in term 
of correct classification rate. 
 
 

4 Kohonen SOM improvements 
This paper uses the Kohonen-like algorithm proposed in [7, 
8] as reference point, whereas a sparse dataset of 3,528 rows 
and 262 columns  used in [20] to discover and evaluate 
hopefully new gene-disease relationships from MEDLINE 
abstracts has been chosen to give a realistic basis to the 
results. This dataset represents a vector space representation 
of the chosen set of abstracts. 
From this vector space model representation the similarity 
space one has been built. This representation is based on the 
similarity matrix: a symmetric matrix where the element at 
row i and column j contains the similarity between the ith  
and the jth element. In this paper it has been adopted a 
similarity in a broad sense defined by the sum of the 
minimum of each pair of vector components.   
The similarity matrix obtained is normalized between zero 
and one. Let us note that a strict similarity measure may be 
obtained by normalizing each row in such a way that the 
sum of its  elements is equal to one.   
The similarity matrix used for classifications has a 
dimension of 3,528 X 3,528. The total number of ones  is 
1,900, 992  out of 12,446,784 elements equal to 15.27% of 
ones.  
The weighted average number of ones for each column 
(row)  is 539 elements.  Figure 1 shows the number of 
columns with different number of ones. 
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The first implementation of the Kohonen-like algorithm was 
implemented with the possibility to use different metrics to 
compute the distance between the input elements and the 
model and many other features.  
The first step was to optimize this implementation by using 
only one distance, a prior check of elements that can be 
eliminated since equal to other elements, to introduce some 
optimization techniques to compute the winning neuron, to 
introduce some short-cuts in the implementation of the 
algorithms such as avoiding the  use of function, avoiding, 
when possible, the  use of power in favour of 
multiplications, or multiplications in favour of additions, 
avoiding the  use of intermediate variables and so on.  
In the second step a compact representation of the similarity 
matrix is proposed.  
This representation consists in maintaining for each row the 
list of elements greater than zero, storing for each row the 
column numbers and the values different from zero. A count 
of the elements greater than zero for each row will allow a 
compact memorization of the matrix and a faster searching 
inside this one.  
 

 
Fig. 1. Number of columns with different number of ones. 
 
The above mentioned representation allows us to consider 
only the element in the similarity matrix different from zero. 
The space complexity to store the similarity matrix, with 
this representation, drops from O (N2) to O ((N * fnon zero)

2).  
The similarity matrix can be pre-computed and used in all 
the cycles of the Kohonen-like  algorithm. 
Moreover, the compact representation of the similarity 
matrix implies also a time improvement. For example, if  
50,000 documents are considered and the similarity matrix 
is stored as double, its allocations requires more or less 20 
G. The time required for its allocation, on an Apple  with 
Intel Xeon Dual Core 2 GHz 64 bit, RAM 4 GB DIMM 
DDR2 667 MHz, 300GB hard disk, with MacOs X 10.4 
operating system was 35 minutes. Using the compact 
representation, since the numbers of ones in the original 
similarity matrix is around 15%, of the total number of 
elements, the space requirement drops to 3 GB thus 
reducing the virtual memory allocation requirements and 

hence the overall allocation time becomes insignificant (less 
than five seconds).  
The best optimization in terms of computational time can be 
obtained if the computation of  equation (1) is performed by 
taking in consideration only the value of s that are different 
from zero.   
Equation 1)  can be rewritten as:  
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In equation (5) the first summation is computed over the 
elements of the input matrix that are different from zero 
thus reducing the complexity from O (N2 * no) to O (N2 * 
fnon zero * no). The second summation can be pre-computed 
and updated during Phase U (update phase). The overall 
running time to compute equation (5) remains O (N2 * fnon 

zero * no) multiplied by a small constant since only 2 * xi(t) * 
wki(t) must be computed in each iteration.  The other 
computations can be done using pre-computed values, only 
at the beginning of the algorithm, for xi(t)

2; and pre-
computed values,  during the update phase, for  wki(t)

2. 
It has also been tried to avoid a pre-computation of the 
second summation in the update phase and to compute it on 
the fly in the distance phase using an early stopping 
strategy. It has also been implemented the possibility, in the 
computation of equation 5, to start from the winning neuron 
of the previous phase for the same input elements, in order 
to improve the gain in the early stopping strategy. This 
optimization however is dependent on the dataset, and 
requires some extra computations.   
It is important to notice that all the proposed optimizations 
are exact optimizations that do not produce any 
classification errors in respect to the original algorithms. 
The computational time required by the algorithm can be 
further reduced by considering, in the computation of the 
neighborhood function, only the first three neurons with the 
smallest distance from the examined input vector.  
With the chosen neighborhood function the contribution of 
the third element is 1/9, to be multiplied by the leaning rate 
that is less than one thus reducing the overall contribution 
further.  In this case the computational complexity of the 
update phase decreases to O (N2) with a constant of six 
since three columns of the weight vector and its squared 
components must be updated. This case has  the advantage 
to lose the proportionality with the number of classes, which 
increases along with the number of documents to be 
classified. This optimization makes the pre computation of 
the second summation of equations 5) still more appealing.  
Various simulations have been performed for different 
number of documents (ranging from 500 to 5,000 in steps of 
500) and different number of classes (ranging from 20 to 
100 in steps of 20) of the optimized brute force 
classification (without any advantage of the sparsity of the 
matrix), the optimized version of the classification 
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algorithms by equations 5) with pre computed values for the 
second summation; the brute force algorithm with a 
neighborhood of three elements and the optimized version 
by equation 5) with a neighborhood of three elements.  
This choice of the optimization strategy makes the 
comparison not dependent on the dataset. The results are 
summarized in figures 2 and 3. 
All the classifications were performed on laptop computer 
with an AMD Turion 64 bit Mobile Technology ML – 30 
1.6 GHz with 2 GB DDR2 RAM  with Windows XP 32 bit 
operating system. The classification algorithms were 
developed in Java. No virtual memory was required in order 
to run the algorithm. 

 

 
a)  

 
    b)  
Fig. 2. Execution time for different number of documents 
and classes: a) brute force; b) optimized version 
 
From the figures the optimization gained with the proposed 
algorithms can be observed: the time required in the 
optimized version is halved, and in the optimized version 
with reduced neighborhood is almost reduced to 1/14. The 
gain increases with   the number of elements to be classified  
or with the  number of classes. 
An approximation version which quantizies the values in 
the similarity matrix and in the weight matrix in 10 classes 
or quantizied ranges starting from 0.1 to 1 with 0.1 
quantization steps has also been designed and implemented. 
 

 
       a) 
 

 
                    b) 
Fig. 3. Execution time for the classification algorithms with 
reduced neighborhood for different number of documents 
and classes: a) brute force; b) optimized version. 

 
This quantization allows us to pre-compute the number of 
elements in each quantizied range.  The knowledge of the 
number of elements in each interval allows us, in the 
distance and update phases, to perform an operation per 
quantization interval, by multiplying the changes by the 
number of elements in the considered interval. When the 
matrices are quantizied, a performance improvement of  
12.7 % over the optimized version has been observed, but 
the price paid is a correct classification rate of 0.92 when 
compared with the exact algorithm. From the data it is 
possible to conclude that, for massive document collections, 
when a grid infrastructure is not available, the quantization 
of s gives a performance improvement with a reasonable 
classification error 

 

5 Conclusion and future work 
This paper proposed several optimization strategies of the 
Kohonen-like algorithm that takes advantage from the 
sparsity of the input matrix.  
The algorithm has been applied in a similarity space, but the 
same considerations can be made for the feature one.  
Several exact optimization strategies have been presented in 
both  time and space. Moreover, the approximate 

MATHEMATICAL METHODS, COMPUTATIONAL TECHNIQUES, NON-LINEAR SYSTEMS, INTELLIGENT SYSTEMS

ISSN: 1790-2769 351 ISBN: 978-960-474-012-3



optimization strategies have been evaluated with respect to 
classification errors.  
From the analysis  the following conclusions can be drawn:  
• Use of a compressed notation for the similarity matrix 

can lead to a drastic drop in space requirements. This 
also gives a time improvement due to less virtual 
memory allocation time necessary. 

• Optimization strategies that take advantage from the 
sparsity of the input matrix can drop the time 
requirement by a factor of ten or more. 

Non exact optimization strategy can lead to a time 
improvement of 15% from the previous case but with a 
correct classification rate of 0.92. 
It could be useful to apply the proposed algorithm to other 
dataset to evaluate the time and space requirements even if 
it is expected that the improvements depend on the grade of 
sparsity of  either the feature or the similarity space. 
Studies are planned to find an optimization strategy which 
takes advantage, in computing the distance between the 
input element and  the winning neuron by equation (1), 
from  the expected correlation of subsequent elements and 
the expected locality of the winning neuron between one 
phase and the successive one.  
How to speed up grid implementations of the Kohonen like 
algorithm, such as the one proposed in [20], is for further 
studies. 
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