
Performance improvements of a Kohonen self organizing classification
algorithm on sparse data sets

FRANCESCO MAIORANA

University of Catania, Department of Computer Engineering and Telecomminications
Via A. Doria, 6 95127 Catania

ITALY

Abstract: - This paper presents a variation of a Kohonen self organizing feature map. From the proposed algorithm possible
performance improvements are investigated in terms of time and space complexity taking advantage from a sparse input data
set. The proposed variation has been tested on different datasets coming from case studies in the field of bioinformatics. The
improvements make the application of the algorithms feasible to massive document collections. The application of the
proposed improvements for grid implementations could be beneficial to reduce the computing element demand.

Key-Words: - Clustering algorithm, Kohonen Self Organizing Map, Space and Time complexity, performance improvements

1 Introduction
Clustering algorithms are playing a central role in data
analysis and exploration. This is true in almost every field
of science. In fact, nowadays the amount of data produced
and stored is surprisingly increasing especially in life
science and in gene expression data collected by
microarray experiments [1, 2].
To overcome the increasing computational demand coming
from the exponentially rising volume of data generated and,
eventually, by the change in space representation (from
feature to similarity space representation) the paper
proposes and evaluates some performance improvements in
terms of computational time and space. These
improvements are more effective on sparse datasets. The
results in terms of execution time reduction and
concordance between the clusters obtained by the improved
algorithms against the Kohonenn algorithm without
performance improvement, which has been taken as
reference point, are presented and evaluated.
The paper is organized as follows: section 2 briefly recalls
the Kohonen self organizing feature map algorithms;
section 3 revises the literature about fast implementation of
the Kohonen algorithms; section 4 describes some
implementations of fast Kohonen algorithm and compares
the results for exact and approximate algorithms; section 5
draws some conclusions and feature works.

2 Brief review of the SOM algorithm
Kohonen Self Organizing Maps (SOM) are often used to
cluster datasets in an unsupervised manner [3, 4, 5]. This
paper deals with on–line SOM since the batch version has
some disadvantages such as the fact that it often represents
an approximation of the on–line algorithm [6].
In the on–line version the weights are updated after the
presentation of each input vector. In order to do this, the

distance (usually the Euclidean distance) is computed
between the input vector and each weight vector as in (1).

)1(...1)()()(noKtwtxtd kk =−=

where no is the number of output neurons.
In the second step the algorithm searches for the winning
neuron, dw,, i.e., the neuron that best matches the input
neuron and is characterized by the minimum distance from
the input vector

)2(...1))((min)(noKtdtd kkw ==

In the third phase the algorithm updates the weights of the
winning neuron and of the neurons that lie in a user defined
neighborhood as follows

)3(...1)()()()()()1(noKtwtxthttwtw kwkk =−+=+ α

where α(t) is the learning rate that modulates the weight
update, and hkw is the neighborhood function that depends,
given a time t, on the winning neuron w and the neuron
under consideration k.
Usually the output neurons are arranged in a bi-dimensional
array; however, some implementations have been proposed
which adopt a different topology of the network where the
output neurons are arranged along a single layer (SL
configuration) [7, 8].
In the SL configuration the network topology is composed
of an input layer with as many nodes as the number of
components of the input element, and an output layer with
as many nodes as the number of classes.
This means that if, at the final cycle, the winning neuron
mostly activated by the ith item is the jth neuron, then the
input object belongs to the class j.

MATHEMATICAL METHODS, COMPUTATIONAL TECHNIQUES, NON-LINEAR SYSTEMS, INTELLIGENT SYSTEMS

ISSN: 1790-2769 347 ISBN: 978-960-474-012-3

In this scenery there is no topological similarity among
output neurons since adjacent output neurons do not
necessarily represent similar classes.
Let us note that in the SL configuration the updating
formula (3) is replaced by a neighborhood function that
chooses the winning neurons and the ones (usually two o
three neurons) that are mostly activated by the current input
object. The neighborhood function is not a topological but
a logical one that finds the output neurons closer to the
input vector.
As neighborhood function the following one has been
proposed in [7]:

)4(
)(

1
)(

2kord
thkw =

where ord (k) is the rank of weight vector k in the ordered
vector of distance computed with formula 1).
The SL clustering algorithms work on both the feature and
the similarity space as proposed in In [7, 8]. If the similarity
space is considered, the algorithm allows us to perform a
final step in which, for each class, it is possible to find both
the most relevant features common to the majority of class
elements, called positive features, and the features not
present in the majority of class elements, called negative
features.
An automatic strategy to find the optimal number of classes
is also proposed in [7, 8].

3 Reviews of performance improvements
of the Kohonen SOM algorithms

Some algorithms belonging to the Kohonen family (here on
referred to as Kohonen–like algorithms can be summarized
by the following three phases:
Phase D: it computes the distance between input and
weight vector by equation (1);
Phase W: it computes the winning neuron by equation (2)
Phase U: it updates the weight by equation (3) using
equation (4) for the neighbourhood.
The computational complexity of each iteration of our
version of the on-line Kohonen algorithm without any
optimization is :

1. Phase D: O(N2 * no)
2. Phase W : O(N * (no * log (no))) since the

vector of distances must ordered if all the
output neurons should be updated
according to their rank.

3. Phase U: O (N2 * no)
where N is the number of input elements, no is the number
of classes or output neurons. The analysis is performed for a
classification step involving the similarity matrix that has a
dimension of N x N.
In literature several studies concerning performance
improvements of the Kohonen like algorithm can be found.

In [9] the authors propose the use of spatial indexing
method such as R-Tree in order to speed up the search of
the winning neuron to reduce the cost from O(no) to logm
(no) where m is the node size.
In [10] the authors propose a fast implementation for a
batch version of the standard Kohonen algorithm. The
optimization they propose has the following computational
complexity for the various phases of the Kohonen
algorithm:

1) Phase D: O(no* (N * fnon zero)
2)

2) Phase W: O (no)
3) Update weight O (no * N * fnon zero

)
where fnonzero is the percentage of elements different from
zero in the input matrix. Their implementation takes
advantage from the batch implementation and from a
different arrangement of equation (1) so that in computing
the distance in equation 1 only the elements of x different
from zero are taken into consideration.
This is possible since in the batch version the weights are
updated only at the end of a phase, i.e., after the
presentation of all the input elements, so allowing the
weights to be pre-computed at the beginning of each epoch.
In [11] the author proposes an on-line implementation of the
Kohonen-like algorithm with the following computational
complexity:

1) Phase D, computes Distance: O(no* N2 * fnon zero))
2) Phase W, computes Winning neuron: O (N * no)
3) Phase U, Updates weights: O (no * N2 * fnon zero

)
To achieve this result a normalized set of weight zk is used
such that wk = βkzk. This set of weight zk can be updated at
a cost proportional to the number of non-zero elements of
the input vector. The algorithm does not update all the
normalized weights after each presentation of an input
vector, but only the weights corresponding to elements of
the input vector different from zero, reducing the overall
computational cost.
The drawback is that in the update steps it is necessary to
update the normalized weights and two constant (βk and ηk

in the paper) with a computational cost proportional to the
number of input components different from zero.
Another drawback is that if the value of βk drops below a
predefined threshold (0.01) the updating equations change
with a computational cost that is no longer determined by
the sparsity of the input matrix.
In [12] the author uses an early stopping strategy in
computing the distance between the input element and the
output ones. In summing up the squared difference between
the components of the ith input element and the weight
vector ones, he stops when the summation is above the
current minimum. In the paper it is suggested to try to start
from the output neuron with the expected smallest distance.
The observation that in many applications, such as speech
recognition and image processing, successive vectors
exhibit strong correlation, leads to the conclusion that the
best matching node (BMN) found for the last input can be
the best candidate for the BMN for the successive input.

MATHEMATICAL METHODS, COMPUTATIONAL TECHNIQUES, NON-LINEAR SYSTEMS, INTELLIGENT SYSTEMS

ISSN: 1790-2769 348 ISBN: 978-960-474-012-3

The author reports a percentage of CPU time saved ranging
from 51.3 % to 56.2 % on real speech data composed of
17,179 weighted cepstrum vectors with a dimension of 12
components for a map size ranging from 10x10 to 20x20. .
In [13] the author finds, for a given input vector, the new
winner (at phase t + 1) in the vicinity of the old one (at
phase t) by storing the old winner in a table containing, for
each training vector, a pointer to the winner.
This is particularly true when the SOM is already smoothly
ordered although not yet asymptotically stable. In searching
for the winning neuron at phase t + 1 the author suggests to
locate the winner for phase t in the table and to perform a
local search for the winner in the neighbourhood around the
located unit. If the best match is found at the edge of this
neighbourhood, the search is continued in the surround of
the preliminary best match. This principle can be used in
both on-line and batch version of the SOM.
The author also suggests to estimate initial value of a map
on the basis of the asymptotic values of a map with a much
smaller number of units.
In [14] the authors compare the performance of a
conventional SOM algorithm and a modification proposed
by one of the authors. The modification consists in:

a) selecting the first 2m +1 neurons (Nw) which best
match the input vector;

b) correcting the weight in the set Nw by equation 3)
c) exchanging the weight vectors of BMU’s

neighbors with the neurons in Nw, so that all the
winning neurons will cluster together as neighbors
with BMU at the centre.

In their implementation they chose m = 2. The new
approach is faster but less stable since the original
neighbors around the BMU are forced to leave the original
class and thus may disrupt the harmony elsewhere in the
map. They report a speed up improvement ranging from
9.68 % to 30.3 % on different datasets with a performance
improvement that tends to increase along with the
dimensionality of the input data.
In [15] several optimization strategies are proposed for
dissimilarity batch self organizing maps, e.g., the
possibility to use pre computed values, a monitoring of the
clusters that change and an early stopping strategy in
computing equation 1) (they stop in computing when the
partial sum is above the minimum).
This last optimization however is dependent on the dataset
and on the order of presentation of the input elements. To
reduce this dependency they propose to first compute the
distance of the elements which are the best candidate
winning neurons.
In [16] the authors extend the optimization technique by
applying the branch and bound principle to reduce the
expected cost of the minimization problem by avoiding an
exhaustive search. The method introduces some
approximations.
The results show, as reported by the authors, that the branch
and bound principle reduces a lot the search burden; the

speeding up along with the number of classes increases
although the speeding up decreases along with the number
of elements since the search phase has not a dominant
computational cost.
In [17] the authors compared several classification
techniques that deal with large datasets by approximation
techniques, by sampling the data sets, by randomized search
in the solution space, or by a probabilistic parallel
randomized search strategy implemented by genetic
algorithms.
In [18] the author proposes, for a batch dissimilarity SOM,
to work on a random sample of the original data set instead
of working on the entire one. The random sample will fit in
main memory and will be much smaller than the original
data set. The author uses the Chernoff bounds to calculate
the minimum sample size for which the sample contains,
with high probability, at least a significant fraction of every
cluster.
If the clustering algorithm on the reduced dataset finds
small clusters, new representations for these clusters are
searched among the remaining data.
In [19] the authors suggest a batch learning algorithms that
update the weights after processing 15% of the training
examples, not only after processing all the training
examples as requested by the batch algorithm. The proposed
algorithm achieves about half of the acceleration of the
batch algorithm without showing its negative effects in term
of correct classification rate.

4 Kohonen SOM improvements
This paper uses the Kohonen-like algorithm proposed in [7,
8] as reference point, whereas a sparse dataset of 3,528 rows
and 262 columns used in [20] to discover and evaluate
hopefully new gene-disease relationships from MEDLINE
abstracts has been chosen to give a realistic basis to the
results. This dataset represents a vector space representation
of the chosen set of abstracts.
From this vector space model representation the similarity
space one has been built. This representation is based on the
similarity matrix: a symmetric matrix where the element at
row i and column j contains the similarity between the ith
and the jth element. In this paper it has been adopted a
similarity in a broad sense defined by the sum of the
minimum of each pair of vector components.
The similarity matrix obtained is normalized between zero
and one. Let us note that a strict similarity measure may be
obtained by normalizing each row in such a way that the
sum of its elements is equal to one.
The similarity matrix used for classifications has a
dimension of 3,528 X 3,528. The total number of ones is
1,900, 992 out of 12,446,784 elements equal to 15.27% of
ones.
The weighted average number of ones for each column
(row) is 539 elements. Figure 1 shows the number of
columns with different number of ones.

MATHEMATICAL METHODS, COMPUTATIONAL TECHNIQUES, NON-LINEAR SYSTEMS, INTELLIGENT SYSTEMS

ISSN: 1790-2769 349 ISBN: 978-960-474-012-3

The first implementation of the Kohonen-like algorithm was
implemented with the possibility to use different metrics to
compute the distance between the input elements and the
model and many other features.
The first step was to optimize this implementation by using
only one distance, a prior check of elements that can be
eliminated since equal to other elements, to introduce some
optimization techniques to compute the winning neuron, to
introduce some short-cuts in the implementation of the
algorithms such as avoiding the use of function, avoiding,
when possible, the use of power in favour of
multiplications, or multiplications in favour of additions,
avoiding the use of intermediate variables and so on.
In the second step a compact representation of the similarity
matrix is proposed.
This representation consists in maintaining for each row the
list of elements greater than zero, storing for each row the
column numbers and the values different from zero. A count
of the elements greater than zero for each row will allow a
compact memorization of the matrix and a faster searching
inside this one.

Fig. 1. Number of columns with different number of ones.

The above mentioned representation allows us to consider
only the element in the similarity matrix different from zero.
The space complexity to store the similarity matrix, with
this representation, drops from O (N2) to O ((N * fnon zero)

2).
The similarity matrix can be pre-computed and used in all
the cycles of the Kohonen-like algorithm.
Moreover, the compact representation of the similarity
matrix implies also a time improvement. For example, if
50,000 documents are considered and the similarity matrix
is stored as double, its allocations requires more or less 20
G. The time required for its allocation, on an Apple with
Intel Xeon Dual Core 2 GHz 64 bit, RAM 4 GB DIMM
DDR2 667 MHz, 300GB hard disk, with MacOs X 10.4
operating system was 35 minutes. Using the compact
representation, since the numbers of ones in the original
similarity matrix is around 15%, of the total number of
elements, the space requirement drops to 3 GB thus
reducing the virtual memory allocation requirements and

hence the overall allocation time becomes insignificant (less
than five seconds).
The best optimization in terms of computational time can be
obtained if the computation of equation (1) is performed by
taking in consideration only the value of s that are different
from zero.
Equation 1) can be rewritten as:

)5()())(2)()(()(
0 1

2∑ ∑
≠ =

+−=
ix

N

i
kikiiik twtwtxtxtd

In equation (5) the first summation is computed over the
elements of the input matrix that are different from zero
thus reducing the complexity from O (N2 * no) to O (N2 *
fnon zero * no). The second summation can be pre-computed
and updated during Phase U (update phase). The overall
running time to compute equation (5) remains O (N2 * fnon

zero * no) multiplied by a small constant since only 2 * xi(t) *
wki(t) must be computed in each iteration. The other
computations can be done using pre-computed values, only
at the beginning of the algorithm, for xi(t)

2; and pre-
computed values, during the update phase, for wki(t)

2.
It has also been tried to avoid a pre-computation of the
second summation in the update phase and to compute it on
the fly in the distance phase using an early stopping
strategy. It has also been implemented the possibility, in the
computation of equation 5, to start from the winning neuron
of the previous phase for the same input elements, in order
to improve the gain in the early stopping strategy. This
optimization however is dependent on the dataset, and
requires some extra computations.
It is important to notice that all the proposed optimizations
are exact optimizations that do not produce any
classification errors in respect to the original algorithms.
The computational time required by the algorithm can be
further reduced by considering, in the computation of the
neighborhood function, only the first three neurons with the
smallest distance from the examined input vector.
With the chosen neighborhood function the contribution of
the third element is 1/9, to be multiplied by the leaning rate
that is less than one thus reducing the overall contribution
further. In this case the computational complexity of the
update phase decreases to O (N2) with a constant of six
since three columns of the weight vector and its squared
components must be updated. This case has the advantage
to lose the proportionality with the number of classes, which
increases along with the number of documents to be
classified. This optimization makes the pre computation of
the second summation of equations 5) still more appealing.
Various simulations have been performed for different
number of documents (ranging from 500 to 5,000 in steps of
500) and different number of classes (ranging from 20 to
100 in steps of 20) of the optimized brute force
classification (without any advantage of the sparsity of the
matrix), the optimized version of the classification

MATHEMATICAL METHODS, COMPUTATIONAL TECHNIQUES, NON-LINEAR SYSTEMS, INTELLIGENT SYSTEMS

ISSN: 1790-2769 350 ISBN: 978-960-474-012-3

algorithms by equations 5) with pre computed values for the
second summation; the brute force algorithm with a
neighborhood of three elements and the optimized version
by equation 5) with a neighborhood of three elements.
This choice of the optimization strategy makes the
comparison not dependent on the dataset. The results are
summarized in figures 2 and 3.
All the classifications were performed on laptop computer
with an AMD Turion 64 bit Mobile Technology ML – 30
1.6 GHz with 2 GB DDR2 RAM with Windows XP 32 bit
operating system. The classification algorithms were
developed in Java. No virtual memory was required in order
to run the algorithm.

a)

 b)
Fig. 2. Execution time for different number of documents
and classes: a) brute force; b) optimized version

From the figures the optimization gained with the proposed
algorithms can be observed: the time required in the
optimized version is halved, and in the optimized version
with reduced neighborhood is almost reduced to 1/14. The
gain increases with the number of elements to be classified
or with the number of classes.
An approximation version which quantizies the values in
the similarity matrix and in the weight matrix in 10 classes
or quantizied ranges starting from 0.1 to 1 with 0.1
quantization steps has also been designed and implemented.

 a)

 b)
Fig. 3. Execution time for the classification algorithms with
reduced neighborhood for different number of documents
and classes: a) brute force; b) optimized version.

This quantization allows us to pre-compute the number of
elements in each quantizied range. The knowledge of the
number of elements in each interval allows us, in the
distance and update phases, to perform an operation per
quantization interval, by multiplying the changes by the
number of elements in the considered interval. When the
matrices are quantizied, a performance improvement of
12.7 % over the optimized version has been observed, but
the price paid is a correct classification rate of 0.92 when
compared with the exact algorithm. From the data it is
possible to conclude that, for massive document collections,
when a grid infrastructure is not available, the quantization
of s gives a performance improvement with a reasonable
classification error

5 Conclusion and future work
This paper proposed several optimization strategies of the
Kohonen-like algorithm that takes advantage from the
sparsity of the input matrix.
The algorithm has been applied in a similarity space, but the
same considerations can be made for the feature one.
Several exact optimization strategies have been presented in
both time and space. Moreover, the approximate

MATHEMATICAL METHODS, COMPUTATIONAL TECHNIQUES, NON-LINEAR SYSTEMS, INTELLIGENT SYSTEMS

ISSN: 1790-2769 351 ISBN: 978-960-474-012-3

optimization strategies have been evaluated with respect to
classification errors.
From the analysis the following conclusions can be drawn:
• Use of a compressed notation for the similarity matrix

can lead to a drastic drop in space requirements. This
also gives a time improvement due to less virtual
memory allocation time necessary.

• Optimization strategies that take advantage from the
sparsity of the input matrix can drop the time
requirement by a factor of ten or more.

Non exact optimization strategy can lead to a time
improvement of 15% from the previous case but with a
correct classification rate of 0.92.
It could be useful to apply the proposed algorithm to other
dataset to evaluate the time and space requirements even if
it is expected that the improvements depend on the grade of
sparsity of either the feature or the similarity space.
Studies are planned to find an optimization strategy which
takes advantage, in computing the distance between the
input element and the winning neuron by equation (1),
from the expected correlation of subsequent elements and
the expected locality of the winning neuron between one
phase and the successive one.
How to speed up grid implementations of the Kohonen like
algorithm, such as the one proposed in [20], is for further
studies.

6 Acknowledgment
This work was supported by the program “ICT per
l’Eccellenza dei territory - Intervento 1 – Piano ICT per
l’Eccellenza del settore Hi-Tech nel territorio Catanese
(ICT-E1)” promoted by the Italian Ministry of Innovation
and by Catania Municipality.

References:
[1] Y. Zhao, G. Karypis, “Data clustering in life science”,

Molecular Biotechnology, vol. 31, no. 1, 2005, pp.
55—80

[2] R. Xu, D. Wunsch “Survey of Clustering Algorithms”,
IEEE Transactions on Neural Networks, vol. 16, no. 3,
2005.

[3] T. Kohonen, “Self Organizing Maps”, Springer 1995
[4] S. Kaski, J. Kangas, T. Kohonen, “Bibliography of self

organizing map (SOM) papers: 1981 – 1997, Neural
Computing Survey, vol. 1, no. 3, 1998, pp. 102—350

[5] M. Oja, S. Kaski, T. Kohonen, “Bibliography of self
organizing map (SOM) papers: 1998 – 2001 Addendum,
Neural Computing Survey, vol. 3, no. 1, 2003, pp. 1—
156

[6] M. Cottrel, J. C. Fort, P. Letremy, “Advantages and
drawbacks of the batch Kohonen Algorithm”, 10th
European Symp. On Artificial Neural Network. Bruges
(Belgium), 2005, pp. 223—230.

[7] A. Faro, D. Giordano, F. Maiorana, “Discovering
complex regularities by adaptive Self Organizing
classification”, Enformatika, vol. I, 2005, pp. 27--30

[8] A. Faro, D. Giordano, F. Maiorana, “Discovering
complex regularities from tree to semi – lattice
classifications”. International Journal of Computational
Intelligence, vol. 2, no. 1, 2005, pp. 34—39

[9] E. C. Vargas, R. Francelin Romero, K. Obermayer,
“Speeding up algorithms for SOM family for large and
high dimensional databases”, Proceedings of the
Workshop on Self Organizing Maps Hibikino (Japan),
2003, pp. 167-172.

[10] R. D. Lawrence, G. S. Almasi, H. F. Rushmejer, “A
scalable parallel algorithm for Self organizing maps with
applications to sparse data mining problems”, Data
Mining and Knowledge Discovery, vol. 3, no. 171, 1999,
pp 171 – 195.

[11] R. Natarajan, “Exploratory data analysis in large
sparse datasets”, IBM Research Report RC 20749, IBM
Research, Yorktown Heights, NY, 1997.

[12] Z. Zhao, “Improvements to Kohonen self-organising
algorithm”, Electronics Letters, vol. 30, no. 6, 1994, pp.
502 – 503.

[13] T. Kohonen, T. “Speedup of SOM Computation”
[14] B. K. Y. Chan, W. W. S. Chu, L. Xu, “Empirical

comparison between two computational strategies for
topological self-organization”, Intelligent Data
Engineering and Automated Learning (LNCS), vol
2690, Springer, 2003, pp. 410-414

[15] B. C. Guez, F. Rossi, A. E. Golli, “Fast algorithm and
implementation of dissimilarity self organizing maps”,
Neural Networks, vol. 19, 2006, pp. 855 – 863.

[16] B. C. Guez, F. Rossi, “Speeding up the dissimilarity
Self Organizing Maps by Branch and Bound”,
Computational and Ambient Intelligence (LNCS), vol.
4507, Springer, 2007, pp 203-210.

[17] C. Wei, Y. Lee, C. Hsu, “ Empirical comparison of
fast partitioning-based clustering algorithms for large
data sets”, Expert Systems with applications, vol 24,
2003, pp. 351 – 363.

[18] A. El Golli, “Speeding up the self organizing map for
dissimilarity data”, Proceedings of International
Symposium on Applied Stochastic Models and Data
Analysis, Brest, France, 2005, pp. 709-713.

[19] M. Nocker, F. Morchen, A. Ultsch, “An algorithm for
fast and reliable ESOM learning”, Proceedings of 14th
European Symposium on Artificial Neural Networks,
Bruges, Belgium, 2006, pp. 131-136

[20] A. Faro, D. Giordano, F. Maiorana, C.Spampinato,
“Discovering Genes–Diseases Associations from
Specialized Literature using the GRID”, to appear on
IEEE Transaction on Information Technology in
Biomedicine.

MATHEMATICAL METHODS, COMPUTATIONAL TECHNIQUES, NON-LINEAR SYSTEMS, INTELLIGENT SYSTEMS

ISSN: 1790-2769 352 ISBN: 978-960-474-012-3

