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Abstract: - This study is focused on the aeroelastic behavior of a circular cylindrical shell in a supersonic airflow. The 
method of analysis is a combination of Sander’s thin shell theory and the classic finite element method. Potential 
theory is applied to model the effect of the hydrodynamic pressure, and piston theory to derive the aerodynamic 
damping and stiffness matrices. The influence of stress stiffness due to internal pressure and axial compression is also 
taken into account. Aeroelastic equations in hybrid finite element formulation are derived and solved numerically. In 
all study cases the shell loses its stability due to coupled-mode flutter and a traveling wave is observed during this 
dynamic instability. The results are compared with existing experimental data and other analytical and finite element 
solutions. The presented study shows efficient and reliable results which can be applied for aeroelastic design and 
analysis of shells of revolution in aerospace vehicles. 
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1   Introduction 
Shells and plates are key elements in the structure of 
aerospace vehicles. For example, they are used 
commonly in the fuselage and engine nacelles of 
airplanes and space shuttles. As they are exposed to an 
external airflow, particularly supersonic flow, dynamic 
instability, flutter, becomes key consideration in the 
design and analysis of skin panels. Circular cylindrical 
shells can also show this kind of aeroelastic instability 
and prevention of this behavior is one of the primary 
design criterions faced by aeronautical engineers. 
Especially, the fluid-structure interaction in a fuel tank 
of a liquid propellant rocket has been an important issue 
during design. 
     After introducing the application of piston theory in 
the aeroelastic models presented by Ashley and 
Zartarian[1], a number of interesting experimental[2] 
and theoretical[3-7] studies were conducted to 
investigate supersonic flutter of a cylindrical shell in the 
late 1960s. In general, all of these works were concerned 
with the development of an analytical relation to 
describe the effect of shell and flow parameters on the 
critical flutter frequency. Aeroelastic models were 
developed by applying the theory of shells (i.e., linear or 
nonlinear Donells shallow-shell theory) in conjunction 

with linear or nonlinear piston theory to account for 
fluid-structure interaction. The resulting governing 
equations were treated numerically using the Galerkin 
method. In most cases the theory did not agree well with 
experimentally obtained results [8].  
     There are also some researchers who focused on the 
numerical solution of this problem. They developed their 
solutions using a variational formulation. For example, 
based on the principle of virtual displacements, the 
variational equations were solved using the finite 
element method (FEM). Aeroelastic governing equations 
were derived by applying classical shell theory based on 
the Kirchchoff-Love hypothesis coupled with the piston 
theory for evaluation of aerodynamic forces. Bismarck-
Nasr[9] developed a FEM applied to the supersonic 
flutter of a circular shell subjected to internal pressure 
and axial loading. The numerical results were compared 
with experimental and analytical solutions. Ganapathi et 
al [10] modeled an orthotropic and laminated anisotropic 
circular cylindrical shell in the supersonic flow using 
FEM and did a parametric study to see the effect of 
different shell geometries on the flutter boundaries.  For 
more details interested readers can refer to the review 
paper presented by Bismarck-Nasr[11]. 
     For such a problem that contains complex structures, 
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boundary conditions, materials, and loading, an 
analytical model becomes very complicated to undergo 
for change of all factors affecting the flutter boundaries; 
therefore, numerical methods like FEM are considered 
such as powerful tools. The first objective of this study is 
to adequately describe supersonic flutter of a circular 
cylindrical shell and present a numerical model of 
existing experimental data. The second objective is to 
determine an efficient choice of shell theory for 
developing a finite element model. Most of the published 
papers in the literature have applied general linear or 
nonlinear shell theory based on the Kirchhof-Love 
hypothesis. These developments can only be applied to 
thin and uniform shells. In cases of multi-layered shells 
or shells of non-uniform thickness (i.e. allowing for axial 
variation in thickness), difficulties occur during the 
calculation of panel flutter. This work is focused on the 
development of a circumferential hybrid element for a 
circular cylindrical shell in the supersonic flow. The 
procedure is similar to the finite element development 
done for vertical shells by Lakis and Paidoussis[12] and 
for horizontal open shells by Selmane and Lakis[13]. 
These developments resulted in precise and fast 
convergence with few numerical difficulties. The linear 
theory developed here is adequate to predict the onset of 
flutter, however nonlinear shell theory required to 
capture the actual limit cycle amplitudes of flutter, is left 
for future study. 
 
 
2   Structural Modeling 
 
2.1 Hybrid Element 
Sander’s[14] shell theory is based on Love’s first 
approximation where the inconsistency related to the fact 
that strains for small rigid-body rotations of the shell do 
not vanish, has been removed. A circumferential 
cylindrical frustum based on the development done by 
Lakis and Paidoussis[12] is applied to generate the mass 
and stiffness matrices of the structural model. This 
element type (see Fig. 1) has two nodal circles with two 
nodal points; i  and j . There are four degrees of freedom 
at each node; axial, radial, circumferential displacement, 
and rotation.  This kind of element makes it possible to 
use thin shell equations easily in order to find the exact 
solution of displacement functions rather than an 
approximation with polynomial functions as is done in 
classical FEM. This element selection results in a hybrid 
element where the convergence criterion of the finite 
element method is provided with greater accuracy. 
Considering the displacement in the normal manner, as: 
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 Lakis and Paidoussis[12] found the exact analytical 
solution for displacements as:  
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    Details of this solution can be found in Ref. [12]. The 
strain vector based this displacement field can be written 
as: 
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and the stress vector becomes as:   
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Therefore the mass and stiffness matrices for each 
element are derived as: 
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where ρ  is the shell density and θrdxddA = . For the 
entire shell geometry, the standard assembly technique 
in FEM can be used along with application of the 
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appropriate boundary conditions to find the global mass 
and stiffness matrices. 
 
 
2.2   Initial Stress Stiffness 
The influence of membrane forces on the dynamic 
stability of a cylindrical shell in the presence of 
supersonic airflow is investigated here. These membrane 
forces are due to pressure differential across the shell mP   
and axial compression xP  . It is assumed that the shell is 
in an equilibrium condition and also it has not reached 
its buckling state. The initial in-plane shear, static 
bending and transverse shear are also ignored for this 
analysis. The stress resultants due to internal pressure 

mP and axial compression  xP  are 
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     The potential energy due to this initial strain is equal 
to[13] 
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where l  is the element length, xxφ  is the strain rotation 

about the x  axis, θθφ  is about the normal to θx  plane 

and nφ  is the rotation about the normal to the shell 
element [14]. 
    If the displacements are replaced by Eq. (3), the 
potential energy in terms of nodal degrees of freedom is 
generated as: 
 

{ } { } dxRdr
NN

N
N

rU
l

x

x
T

i θ
π

θ

θ∫ ∫
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
=

0

2

0

00
00
00

2/1
  (10) 

 
where 
 

{ }
⎭
⎬
⎫

⎩
⎨
⎧

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

−

∂
∂

−

∂
∂

−

=
j

iNC
V
W
U

xR

R

x
r

δ
δ

θ

θ
]][[

2
10

2
1

010

00

0

 (11) 

 
and finally the stress stiffness matrix can be written as: 
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    After assembling the whole initial stiffness matrix, it is 

added to the global stiffness matrix calculated in Sec. 2.1 
for further analysis. 
 
 
3   Fluid Loading 
 
3.1   Piston Theory 
Piston theory is a powerful tool for aerodynamic 
modeling in aeroelasticity. For a cylinder subjected to an 
external supersonic airflow parallel to the centerline of 
the shell, the fluid-structure effect due to external 
pressure loading can be taken into account using 
linearized first-order potential theory with (or without) 
the curvature correction term,[16],[17]: 
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where ∞p , ∞U , M andγ are the freestream static 
pressure, freestream velocity, Mach number and 
adiabatic exponent of air, respectively. If the Mach 
number is sufficiently high ( 2≥M ) and neglecting the 
curvature term

2/12 )1(2 −MR
W , this equation simplifies to 

yield the so-called linear piston theory [1]: 
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where ∞a is the freestream speed of sound. Replacing 
the displacement from Eq. (3), the pressure is found in 
terms of nodal degree of freedom as (for example, Eq. 
(14)): 
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3.2   Potential Flow 
In cylindrical coordinate system the governing equation 
for velocity potential φ  satisfying Laplace equation, is 
expressed as: 
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Using Laplace equations for potential flow accompanied 
by boundary conditions defined by an impermeability 
condition and Bernoulli’s equation, the linear pressure 
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loading on the shell wall is given by: 
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where fρ  is fluid density. In the above equation, Z  
which is expressed in terms of Bessel functions of the 
first and second kind, is found in the Ref. [18]. Upon 
replacement of displacement from Eq. (3) this pressure 
loading in terms of nodal degree of freedom becomes: 
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3.3   Aerodynamic Damping and Stiffness 
The general force vector due to the pressure field is 
written as: 
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     For example, using the piston theory to account for 
pressure loading, Eq. (15) can be substituted into Eq. 
(17) and the aerodynamic damping, ][ fc , and stiffness, 

][ fk , for each element can be found as: 
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     In a case of potential flow for pressure loading, upon 
substitution in Eq. (17), it yields also to fluid mass 
matrix as: 
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4   Aeroelastic Model in FEM  
The governing equation of motion for a fluid filled 
cylindrical shell subjected to an external supersonic flow 
under combined internal pressure and axial compression 
can be written in the following form as: 
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where subscripts s and f refer to a shell in vacuo and 
fluid, respectively and I refers to a shell under axial 
compression and/or pressurized. 
     In order to find the aeroelastic behavior of a shell, 
eigenvalues and eigenvectors of Eq. (22) are found by 
means of the equation reduction method. 
 
 
5   Results and Discussion 
In this section, numerical results are compared with 
existing experimental data [2], analytical [3, 6, 7] and 
numerical [9, 10] solutions. In all of these studies shell 
geometry and flow parameters have the following 
similar features: 
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where ∞tT  is the freestream stagnation temperature and 

sρ is the shell density . This set of data was taken from 
the experiments done by Olson and Fung[2, 3] in the 
NASA Ames Research Center (here referred to as case-
I). It is necessary to mention that in some of references 
[6, 9] different values for inL 16= , 26 /1013 inlbE ×=  
and 33.0=υ  have been used (referred to as case-II). As 
a consequence, in the present analysis comparison of 
numerical results was sought for each given set of data. 
     For both sets of data (case-I and II), numerical results 
of this study compared to experimental, theoretical and 
numerical analyses are presented in Table 1. In all of the 
cases, instability occurred in the form of coupled-mode 
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flutter. The proposed FEM shows very good agreement 
with experimental and analytical results and also has 
better capabilities for aeroelastic stability prediction in 
terms of critical ∞p and n  compared to the other FEM 
methods. In Fig. 2 the results of flutter boundary for two 
different aerodynamic theories; piston and potential 
theory have been presented and compared with the 
experimental data of Ref. 3. It can be seen that both 
theories predict a larger stabilizing effect of the shell 
internal pressure than the experiments. It also indicates 
that the potential solution for flutter boundary is higher 
than that found using piston theory, and the critical value 
of the circumferential wave number n  is somewhat 
smaller than predicted by piston theory. This is due to 
the dependency of the pressure field on n  in potential 
theory. As n  increases, the pressure decreases 
significantly. In piston theory the pressure field and n  
are independent. Therefore, a lower value of n  is 
reached at the flutter boundary. The further analysis in 
this study is therefore done by applying the piston theory 
as an aerodynamic model to account for fluid structure 
interaction in a supersonic flow. 
     Figure 3 shows some typical complex frequencies 
versus freestream static pressure, ∞p  for 25=n . Only 
the first and second modes are shown ( 2,1=m ). 
Aerodynamic pressure is evaluated using piston theory.  
In Fig. 3a the real part of the complex frequency for the 
first mode increases while for the second mode it 
decreases as ∞p increases.  For higher values of ∞p  these 
real parts eventually merge into a single mode. If ∞p  is 
increased still further, the shell loses stability 
at psip 521.0=∞ .  This instability is due to coupled-
mode flutter because the imaginary part of the complex 
frequency (which represents the damping of the system) 
crosses the zero value (see Fig. 3b) and makes the 
vibration amplitude grow. 
     In Fig. 4, the flutter boundary for the shell geometry 
of case-II under different internal pressures mP  is 
shown. The lowest critical value of freestream static 
pressure for each circumferential wave number becomes 
larger when mP  is increased. It is observed that shell 
internal pressure has a stabilizing influence. Note that 
experiments[2] demonstrated that for moderate values of 

mP  the shell loses it dynamic stability up to even 
unpressurized level while small and high values of mP  
stabilize the shell completely (see Fig. 2). This behavior 
is explained quite well by considering shell 
imperfections during the analysis[6, 18]. The effect of 
axial compression on the flutter boundary is also shown 
in Fig. 4. The axial load xP  decreases the stiffness of the 
shell which results in a lower critical freestream static 

pressure than an unstressed shell. 
    Figure 5 shows the critical value of freestream static 
pressure for different filling ratio for various length of 
shell. In general, the critical ∞p  for empty shell 
increases as the length ratio is decreased. It is seen that 
for the lower filling ratio, the critical freestream static 
pressures change rapidly and widely as the filling ratio is 
increased. By increasing the length ratio the decrement 
of the critical value of ∞p  is decreases or vanished. This 
rapid change in the low filling ratio and steady critical 

∞p  in the large filling ratio indicates that the fluid near 
the bottom of shell is influenced more by elastic 
deformation of shell subjected to the external supersonic 
flow.  
 
 
6   Conclusion 
An efficient hybrid finite element method is used to 
analyze the dynamic stability of circular cylindrical 
shells subjected to external supersonic flow. Linear 
Sander’s shell theory with two different potential and 
piston theories to account for the aerodynamic pressure 
field is used in a combined approach to derive the 
aeroelastic equation of motion. It is observed that piston 
theory provides a better approximation to account for 
fluid–structure interaction in supersonic airflow 
conditions. Numerical results are obtained for different 
shell boundary conditions and geometries. In all the 
study cases, only one type of instability is found, namely 
coupled-mode flutter mostly, in the first and second 
longitudinal modes. There is a good agreement for 
prediction of flutter onset with existing experiments and 
other analytical and FEM analyses. This proposed hybrid 
FEM provides the capability to apply different theories 
with different complex boundaries and geometries for an 
empty or partially liquid-filled circular cylindrical shell. 
This can be used effectively in the design and analysis of 
aerospace structures. Reliable results can be obtained at 
less computational cost compared to commercial FEM 
software, which imposes some restrictions when such an 
analysis is done. 
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Fig. 1 Geometry of cylindrical frustum element 

 
 
 

Table 1  Comparison of shell flutter boundary at 3=M  and 0== mx pp  

 ∞p , psi criticaln  L , in υ     2/, inlbE  

Experimental results2 0.380-0.420 20 15.40 0.35 16× 106 
Analytical results6 0.420 24 16.00 0.33 13× 106 
Analytical results3 0.550 25 15.40 0.35 16× 106 
Analytical results7 0.330 27 15.40 0.35 16× 106 

FEM results9 0.5621 34 16.00 0.33 13× 106 
FEM results10 0.5621 25 16.00 0.33 13× 106 
FEM results10 0.5621 26 15.40 0.35 16× 106 
Present results 0.522 26 15.40 0.35 16× 106 
Present results 0.382 25 16.00 0.33 13× 106 
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Fig. 2 cylindrical shell flutter boundaries 
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Fig. 3   a) Real part and b) imaginary part of the eigenvalues of system vs freestream static pressure, shell case-
I, aerodynamic pressure evaluated by piston theory, 25=n psipp xm 0.0==  
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Fig. 4  Flutter boundaries for stressed shell. Shell case-II, 2/0.0 inlbpx = : ♦, 2/0.0 inlbpm = ; 

■, 2/246.0 inlbpm = ;▲, 2/50.0 inlbpm = ;●, 2/70.0 inlbpm = ; ∆, lbpx 30= , 2/0.0 inlbpm = .  
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Fig. 5  Flutter boundaries for different H/L: ■, L/R=4; ♦, L/R=2; ▲, L/R=1 
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