Abstract: The future interplanetary missions will probably use the conventional chemical rockets to leave the sphere of influence of the Earth, and solar electric propulsion (SEP) to accomplish the other maneuvers of the mission. In this work the optimization of interplanetary missions using solar electric propulsion and Gravity Assisted Maneuver to reduce the costs of the mission, is considered. The high specific impulse of electric propulsion makes a Gravity Assisted Maneuver 1 year after departure convenient. Missions for several Near Earth Asteroids will be considered. The analysis suggests criteria for the definition of initial solutions demanded for the process of optimization of trajectories. Trajectories for the asteroid 2002TC70 are analyzed. Direct trajectories, trajectories with 1 gravity assisted from the Earth and with 2 gravity assisted from the Earth and either Mars are present. An indirect optimization method will be used in the simulations.

Keywords: Astrodynamics, Celestial Mechanics, Space Trajectories, Orbital Maneuvers, Electric Propulsion.

1. Introduction

The solar electric propulsion could be the best option for the transports of the future due to its high specific impulse when compared to the chemical propulsion. Electric propellants are being extensively used to assist the propulsion of terrestrial satellites for the maneuvers of orbit correction and as primary propulsion in missions toward other bodies of the solar system.

Both NASA and ESA have launched spacecrafts which used SEP (Solar Electric Propulsion) as the primary propulsion system; NASA's DS1 and ESA's Smart-1 to the moon to comet Borrelly.

Indirect optimization methods are suitable for the low thrust trajectories that are used in simulations. A finite force is applied during a finite interval of time and it is necessary to integrate the state equation along the time to know its effect. Several results exist in literature, starting with the works of Tsien (1953) and Lawden (1955). Other results and references can be found in Prado (1989), Prado and Rios-Neto (1993), Casalino and Colasurdo (2002) [1], Santos (2006) [2]. The most used method in this model is the to called "primer-vector theory", developed by Lawden (1953 and 1954)[4, 5]. In this paper, theory of optimal control is applied and a procedure based on the Newton Method to decide the boundary problems is developed. The Pontryagin's Maximum Principle (PMP) is used to maximize the Hamiltonian associated to the problem and evaluates the optimal structure of the "switching function".

The spacecraft leaves the Earth's sphere of influence with a hyperbolic velocity whose optimal magnitude and the direction will be supplied by the optimization procedure. The initial mass is directly related to the magnitude of the hyperbolic velocity, assuming that a chemical thruster is used to leave a low Earth orbit (LEO). Out of the Earth's sphere of influence, the electric propellants is activate and the available power is proportional to the square of the distance from the sun; the propulsion is provided by one or two "PPS 1350 ion thrusters and Phall 1 (UNB)".

2. Description of the Problem

The spacecraft will be considered a point with variable mass m and trajectory will be analyzed using the patched-conics approach. The time required by the spacecraft to leave the Earth's sphere of influence is neglected and, in this formulation, only equations of motion in the heliocentric reference system will be considered. The spacecraft is influenced by the Sun gravitational acceleration \(\mathbf{g} \) and the propulsion system of the vehicle implements a thrust T. With this formulation, a maneuver of Earth flyby can be used to
gain energy and velocity, that provokes a discontinuity in the relative state variables in the velocity.

The variables are normalized using the radius of the Earth's orbit, the corresponding circular velocity, and the mass of the spacecraft in stationary orbit as values of reference.

The solar electric Propulsion will be considered, therefore, the available power and thrust varies with the square of the distance from the sun.

In the problem, the thrust is the only control during the heliocentric arcs, and it will be optimized to get the minimum consumption, that is measured by the final mass of the spacecraft. Since the thrust appears linearly in the equation of motion, a bang-bang control, that consists of alternating ballistic arcs with arcs of maximum thrust will be required. The trajectory is composed by a succession of ballistic arcs (zero-thrust) and arcs of maximum thrust, where the optimal direction will be supplied by the optimization procedure.

The boundary conditions are imposed in satisfactory way at the junctions between trajectory arcs.

The integration initiates when the spacecraft leaves the Earth's sphere of influence, at the position \(\vec{r}_i = \vec{r}_\oplus(t_i) \) that coincides with the Earth is position, considering the velocity \(\vec{v}_i \) free. The hyperbolic velocity is given by \(\vec{v}_{c\ell} = \vec{v}_i - \vec{v}_\oplus(t_i) \), assuming that a rocket thruster is used to leave the Low Earth Orbit (LEO) with an impulsive maneuver; the vehicle mass on LEO is specified. The increment of velocity (\(\Delta V \)) demanded to provide the hyperbolic velocity is \(\Delta V = \sqrt{\vec{v}_{c\ell}^2 + \vec{v}_c^2 - \vec{v}_e^2} \), where \(\vec{v}_e \) and \(\vec{v}_c \) are the escape and circular velocity at the LEO radius [2].

The initial mass at the exit from the Earth's sphere of influence is,

\[
m_i = a - b V_e - c V_c^2
\]

where,
\(\Delta(1 - m_f) \) is the jettisoned mass of the exhausted motor, which is proportional to the propellant mass. The spacecraft intercepts the Earth and accomplishes Gravity Assisted Maneuvers (Santos et al., 2005) [7 - 9]. The position of the vehicle \(\vec{r}_c = \vec{r}_\oplus(t_c) \) is constrained and the magnitude of the hyperbolic excess velocity \(\vec{v}_{c\ell} = \vec{v}_c - \vec{v}_\oplus(t_c) \) is continuous \(v_{c\ell}^2 = v_e^2 \) [2].

If the minimum height constraint on the flyby is requested, a condition on the velocity turn angle is added:

\[
\vec{v}_{c\ell}^T \vec{v}_{c\ell} = -\cos(2\phi) v_{c\ell}^2
\]

where,

\[
\cos(\phi) = \frac{v_p^2}{v_e^2 + v_p^2}
\]

\(v_p \) is the circular velocity at the low distances allowed for a planet.

\[
\vec{v}_{c\ell} = \vec{v}_{c\ell} - \vec{v}_4
\]

At the final point (subscript \(f \)), the position and velocity vectors of the spacecraft and the asteroid coincide,

\[
r_f = r_A(t_f) \quad \text{(5)}
\]

\[
v_f = v_A(t_f) \quad \text{(6)}
\]

The theory of optimal control provides the control law and necessary boundary conditions for optimality.

3. Optimization Procedures

The objective is to use the theory of optimal control to maximize the spacecraft final mass.

Dynamical equations are,

\[
\dot{\vec{r}} = \vec{v} \quad \text{(7)}
\]

\[
\dot{\vec{v}} = \vec{g}(\vec{r}) + \frac{\vec{T}}{m} \quad \text{(8)}
\]

\[
\dot{m} = -\frac{\vec{T}}{c}
\]

Applying the theory of optimal control, the Hamiltonian function is defined as (Lawden, 1954) [3, 2]:

\[
H = \dot{\lambda}_r \vec{v} + \dot{\lambda}_r \left(\vec{g} + \frac{\vec{T}}{m} \right) - \lambda_m \frac{\vec{T}}{c}
\]

An indirect optimization procedure is used to maximize the payload. According to Pontryagin's Maximum Principle the optimal controls maximize H.

The nominal thrust \(T_0 \) at 1 AU, and the electrical power are (Casalino, L. and Colasurdo, G., 2002) [2],

\[
P_0 = \frac{T_0 c}{2\eta} \quad \text{(9)}
\]

\[
T_{Max} = \frac{T_0}{r^2}
\]

Optimal control theory provides differential equation for the adjoint equations of the problem (Euler-Lagrange).

Adjoint equations are,

\[
\ddot{\lambda}_r = \lambda_r \frac{\partial \vec{g}}{\partial \vec{r}} - S_j \frac{\partial T}{\partial r} \quad \text{(10)}
\]

\[
\ddot{\lambda}_m = -\lambda_m \quad \text{(11)}
\]
\[\dot{\lambda}_r = \frac{\dot{r}}{m} \] \hspace{2cm} (12)

where, \(G = \frac{\partial \bar{g}}{\partial r} \).

Optimal control: thrust direction and magnitude are,
\[\vec{T} \parallel \vec{\lambda}_r \]
\[H = \vec{\lambda}_r \dot{v} + \vec{\lambda}_r G + \vec{T} \left(\frac{\dot{\lambda}_r}{m} - \frac{\dot{\lambda}_m}{c'} \right) \] \hspace{2cm} (13)
\[S_f = \frac{\lambda_r}{m} - \frac{\lambda_m}{c'} \]

where,
\(c' \) - is the effective exhaust velocity of the rocket thruster;
\[T_{\text{Max}} = \begin{cases} T_0 & r < r_c \\ r_c & S_f > 0 \\ 0 & S_f < 0 \end{cases} \] \hspace{2cm} (14)

The necessary optimal conditions [5, 2].
\[H_{\mu j} + \frac{\partial \varphi}{\partial t_{\mu j}} + \lambda_j \frac{\partial \lambda_j}{\partial t_{\mu j}} \} \delta u_j = 0 \] \hspace{2cm} (15)
\[H_{\nu j} - \frac{\partial \varphi}{\partial t_{\nu j}} - \mu_j \frac{\partial \lambda_j}{\partial t_{\nu j}} \} \delta u_j = 0 \] \hspace{2cm} (16)
\[\lambda_j - \frac{\partial \varphi}{\partial \lambda_j} - \mu_j \frac{\partial \lambda_j}{\partial \lambda_j} \} \delta \lambda_j = 0 \] \hspace{2cm} (17)
\[\lambda_j + \frac{\partial \varphi}{\partial \lambda_j} + \mu_j \frac{\partial \lambda_j}{\partial \lambda_j} \} \delta \lambda_j = 0 \] \hspace{2cm} (18)

Where:
\(\vec{\lambda} \): the vector collecting the constraining boundary conditions (see eq. 15 - 18)
\(\varphi = m \dot{r} \)

At the initial point:
1. \(\vec{r}_0 = \vec{r}_0^* \);
2. \(m_0 = 1 - bV_\infty - cV_\infty^2 \)
3. \((\vec{v}_0 - \vec{v}_\infty)^2 = \vec{v}_\infty^2 \);
4. Equations 16 and 18 provide optimal control with \(\lambda_0 \) and \(T_0 \) free;
5. the necessary condition optimal of the state is \(\dot{\lambda}_0 \) (primer vector) be parallel to the hyperbolic velocity;

At flyby [2]:

1. the equations (15 and 16) are used to obtain the transversality conditions, that implicates in determining the arc time used;
2. at the equations (17 and 18) the \(\lambda_j \) is parallel to the hyperbolic velocity, before and after of free flyby maneuver; the magnitude is continuous;
3. the states of Hamiltonian remain continuous through the flyby maneuvers;
4. when the minimum height constraint of the flyby is requested, a condition on the velocity turn angle is added (Eq. 2 and 3).

At the final point:
1. \(\dot{\lambda}_f \) is parallel to the hyperbolic velocity, \(\dot{\lambda}_f \) is parallel to the radius and \(\dot{\lambda}_f \vec{v}_f + \dot{\lambda}_f \vec{g} = 0 \);
2. the final values of \(\dot{\lambda}_{\text{adj}} \) and \(H_f \) depends on the control model that was considered in the maneuver;
3. the adjoint variable \(\dot{\lambda}_s \) is zero during the whole trajectory.

4. Numerical Analysis

The characteristics of the spacecraft propulsion system that have been assumed are [5]:
1. the mass of the spacecraft with an altitude of 200 km in circular LEO is 2133.3 Kg;
2. specific impulse \(I_s = 1550 \) s;
3. specific energy \(\varepsilon = 0.06; \)
4. \(\frac{\mu}{\varepsilon} = 2 \cdot 70 \) nN (thruster PPS 1350 used for the SMART-1 mission to the moon);
5. nominal thruster \(T_0 = 1 \) UA;
6. The time: time \(= 0 \) corresponds to the date 01/01/2000.

The necessary optimal condition were formulated in agreement with the problem; the bang-bang control was used in the formularization with limited power and constraint in the time of flight.

Figure 1 - Final mass vs. mission duration without flyby.
5. Mission Asteroid 2002tc70

<table>
<thead>
<tr>
<th>Name</th>
<th>2002TC70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epoch</td>
<td>54200</td>
</tr>
<tr>
<td>a</td>
<td>1.369831</td>
</tr>
<tr>
<td>e</td>
<td>0.19691574</td>
</tr>
<tr>
<td>i</td>
<td>2.13932</td>
</tr>
<tr>
<td>Ω</td>
<td>161.89427</td>
</tr>
<tr>
<td>ω</td>
<td>134.84892</td>
</tr>
<tr>
<td>M</td>
<td>351.6336031</td>
</tr>
<tr>
<td>ra</td>
<td>1.10009</td>
</tr>
<tr>
<td>rp</td>
<td>1.639572</td>
</tr>
</tbody>
</table>

Table 1 – Keplerian Elements

5.1 Simulation without flyby

Using the optimization procedure we can find optimal trajectories, with the maximization of the spacecraft final mass (i.e., minimum fuel consumption). These trajectories depend on the mission objectives, for example, the performance depends on the mission time length. It is possible to reduce the time with some more spend of propellant, as it can be seen in Table 2. The simulation n° 2, instead of the simulation n° 6, wears out 10.6635 Kg more of fuel mass, but reduces the time of flight of the spacecraft by approximately 802.23 days, which corresponds to more than a 2 year saving.

Table 2 – Optimal final mass without flyby

<table>
<thead>
<tr>
<th>N°</th>
<th>ΔT (58.132821 days)</th>
<th>mf</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.00</td>
<td>0.72633132329091</td>
</tr>
<tr>
<td>2</td>
<td>12.0</td>
<td>0.752879876682167</td>
</tr>
<tr>
<td>3</td>
<td>18.2</td>
<td>0.776826669492402</td>
</tr>
<tr>
<td>4</td>
<td>23.8</td>
<td>0.777069105326169</td>
</tr>
<tr>
<td>5</td>
<td>25.0</td>
<td>0.781271203784888</td>
</tr>
<tr>
<td>6</td>
<td>32.0</td>
<td>0.781825302016599</td>
</tr>
</tbody>
</table>

Each point represented in Figure 1 and in Table 2 represents a mission with a specified final mass and duration time of the maneuver. This choice could be in accordance with the necessities of the mission.

The eccentricity (e) and semi-major axis (a); the structure of the switching function that shows the thrust arc and coast arc (Eq. 14); the right ascension as a function of the declination; the evolution of the hamiltonian and energy orbits in elapsing of the time, are visualized in Figure 3.

5.2 EGA mission

An Earth flyby can be used to vary the semi-major axis (a) and the eccentricity (e) in order to increase the apoapsis (ra) (or reduce the periapsis rp) or to vary the inclination (i) of the orbit.
Both the effects can be achieved if the line of nodes and the line of apsides are aligned (i.e. the argument of periapsis is close to $\omega \approx 0$, 180 or 360 degrees).

5.3 EMGA mission:

The formulation allows the use of multiple flyby's searching for a better performance. The criterion of the choice of flyby in Mars or Venus is the semi-major axis (a) of the asteroid:

$$
\begin{align*}
| a > 1 & \rightarrow Mars\ Flyby \\
| a < 1 & \rightarrow Venus\ Flyby
\end{align*}
$$

Mars flyby can be used to increase the periapsis (r_p) and in Venus to reduce the apoapsis (r_a).

The Figures 6 and 7 show the parameters of a mission leaving the Earth, making one flyby in the Earth and other in Mars, with the objective of intercepting the asteroid 2002TC70.
Figure 7 shows the transfer orbit from the Earth to asteroid 2002TC70, the switching function that shows the alternation between the propulsion arcs and the arcs without propulsion, the variation of the right ascension in comparison with the declination, the energy and the hamiltonian of the transfer orbit.

Table 3 exhibits a comparison of time and final mass of the vehicle with the use of the optimized maneuver without flyby e with flyby at the Earth, and, Earth and Mars.

Table 3 – Comparative table of the use of the flyby for asteroids.

Figure 8 - The switching function for the transfer orbit from the Earth to asteroid 2002TC70.
3. Conclusion

The search for the best initial parameters for a mission is facilitated, if the transfer orbit with free time is optimized first. The ideal asteroids for EGA missions should possess low orbit energy, perihelion close to 1 UA, low inclination per EGA.

Indirect optimization methods based on optimal control theory supply accurate solutions. The use of Gravity Assisted Maneuver (EGA, EMGA or EVGA) in this mission reduces the fuel consumption and the time of the maneuver, demonstrating that this important formulation is viable and useful.

The fuel consumption for a mission with multiples flybys follows the criterion of the asteroid orbit.

Acknowledgments

This work was accomplished with the support of CAPES – Brazil, INPE – National Institute for Space Research – Brazil, and Instituto Politecnico di Torino – Italy.

References

