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Abstract: -  The control of uptake and release of hepatic glucose is a complex problem and has a relative 
physiological importance. The mellitus diabetes is a disease with serious social implications through the large 
number of people affected, complications and high costs that it involves. The introduction in the medical 
practice of the blood glucose continuous monitoring systems has made possible the automated analysis of the 
blood glucose dynamics. In this work the authors present an algorithm focused on the spectral analysis 
methods in order to detect the reliable characteristics, useful in the identification of standard aspects or 
automatic diagnosis in the diabetic patients monitoring with applications, especially in the intensive care units 
and telemedicine. 
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1   Introduction 
The actual developpment of the blood glucose (BG) 
continous monitoring system has allowed the study 
of the blood glucose dynamics through a great 
number of mathematical methods. Their results have 
shown the complexity of the blood glucose control 
and the specific physiopathological response of 
every body system to pathological perturbations. 
The most important disease of this medical field is 
diabetes mellitus, which is based on impairement in 
insulin secretion that affects the blood glucose 
concentration and so that the body metabolism with 
grave complications. 
     Physiologically, insulin stimulates glucose 
uptake, by insulin sensitive tissue (mainly skeletal 
muscle and adipose tissue) and inhibits hepatic 
glucose production. Insulin secretion is an important 
oscillatory process and insulin oscillations are 
followed by the plasma glucose oscillations.  
     The normal pattern of insulin secretion rate 
displays: 

• Very rapid oscillations occurring at 10 
second intervals, related to molecular 
intracellular processes. 

• Rapid oscillations occurring from 8 to 15 
minutes. 

• Slow oscillations occurring at 90 to 120 
minutes. 

• Circadian oscillations related to cortisol 
circadian rhythm and growth hormone 
secretion after sleep. 

Rapid and slow oscillations are still a controversial 
subject of experimental studies, but they are 
certainly related to the insulin glucose control 
system. All studies show the oscillatory feature of 
the long term BG recordings [1], [2], [3]. Also, in 
the BG control, counter regulatory hormones 
intercede: glucagon, catecholamine, cortisol and 
growth hormones which increase the concentration 
of BG by stimulating the production of hepatic 
glucose and/or inhibiting tissue glucose uptake. 
Experimental Studies have shown "fast" (tens of 
seconds) and "slow" (4–6 min) insulin oscillations in 
secretion and their interactions. Bertram and his 
colab [4] proposed that the fast oscillations result 
from electrical mechanisms, predominantly 
feedback of cytosolic free calcium on plasma 
membrane ion channels, and that the slow 
oscillations result from metabolic, possibly 
glycolytic, oscillations. 
     The ultradian oscillations (period 80-150 min) in 
insulin secretion rate are tightly coupled to glucose 
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oscillations of similar period. C. Simon [5] 
consideres that this oscillations are probably 
partially the consequences of a negative feedback 
loop linking glucose and insulin secretion rate. Also, 
the effects of sleep on insulin secretion are achieved 
by an enhancement of the oscillation amplitude 
which could be partly mediated by growth hormon. 
N. M. O'Meara and colab. [6] have demonstrated 
through pulse analysis, cross-correlation analysis, 
and spectral analysis that important dynamic 
properties of the feedback loop linking insulin 
secretion and glucose are disrupted not only in 
established non-insulin dependent diabetes mellitus, 
but also in conditions where glucose tolerance is 
only minimally impaired.  
     J. Sturis and his colab. [7] have shown that the 
relative amplitudes of both the insulin and glucose 
oscillations were also similar in diabetic and 
nondiabetic subjects. The major abnormality in 
patients with Type 2 diabetes was evidenced by 
spectral analysis, and confirmed by calculations of 
the distributions of inter-pulse intervals. It consisted 
of a slowing of the glucose oscillations, without a 
similar slowing of the oscillatios in insulin secretion. 
     C. Simon and G. Brandenberger [8] have proven 
tha the ultradian oscillations are not related to the 
ultradian oscillations in sympathoagal balance, as 
inferred from spectral analysis of cardiac R-R 
intervals, or the plasma fluctuations of glucagon-like 
peptide-1.  
     The complex control system of blood glucose 
must include many other components and 
physiological parameters, such as the liver and 
pancreas and their relationship mediated through the 
magnitude of insulin pulse mass in regulating the 
quantity and pattern of systemic insulin delivery. (J. 
J. Meier) [9]. 
     Research in this area will have in the nearby 
future a major impact in the medical environment. 
They belong to the modern tendency to automate 
and to introduce the informatics in the human 
medicine. 
 
 
2   Problem Formulation 
Our team’s purpose was to develop new, performant 
algorithms for automatic diagnosis in the diabetic 
patients monitoring with applications, especially in 
the intensive care units and telemedicine. Automatic 
diagnosis in such a medical field requires the 
introducing of a proper method or a group of 
mathematical methods capable to achieve moment 
to moment the following objectives: 
- to identify the type of diabetes 

- to detect the pathological component in the early 
stages of the disease 

- to quantify the risk level of the metabolic 
disorders 

- to reveal the trend in the pathological state 
evolution 

- to estimate the response to the treatments 
In the beginning, we have focused on the spectral 
analysis methods in order to detect the reliable 
characteristics, useful in the identification of 
standard aspects or stable patterns for each type and 
stage of the complex and long-term evolution of the 
disease that is diabetes mellitus.  
 
 
3   Problem Solution 
 
3.1  Experimental lot 
For this study we have selected 18 adult subjects (10 
female and 8 male), patients with insulin dependent 
mellitus diabetes and 3 healthy humans. 16 patients 
underwent treatment with rapid and semi-lent types 
of insulin, at different times of the day, according to 
the classic method of treatment and clinically 
supervised. Patients maintain a satisfactory or poorly 
control of the blood glucose concentration for a long 
period of time. Two patients have received a proper 
dosage of insulin by a new device called “insulin 
pump”. This offers a continuous basal rate of insulin 
and facilitates the administration of bolus insulin 
related to meals, exercise or other particular states. 
These patients maintain a very good control over the 
blood glucose concentration for a long period of 
time.  
     The blood glucose was recorded to each patient 
at five minute intervals, continuously for three days, 
using the Real-Time Guardian Continuous Glucose 
Monitoring System (CGMS) [10], [11] in 
unrestrained conditions. Each patient had a normal 
life, with usual meals and activities at work and at 
home. The continuous blood glucose records 
represent for this study time-series of the blood 
glucose concentration. The following figures present 
the blood glucose representation for 24 hours. For 
exemplification we choose the following individual 
cases: 

• One patient (P1) with insulin dependent 
diabetes (type I) under intermittent 
treatment with insulin injections. The 
CGMS displays high variability of the 
glucose values as an expression of an 
insufficient control of diabetes (Fig. 1).  

• One patient (P2) with insulin dependent 
diabetes under insulin treatment 
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administrated by insulin pump. The CGMS 
displays a less variability of glucose values, 
expression for an improved control of 
diabetes (Fig. 2).  

• One healthy subject (P3) with normal food 
administration and activity. The CGMS 
displays a low variability of the glucose 
values, expression of an efficienty blood 
glucose control (Fig. 3). 

 
3.2 Mathematical Methods 
The spectral analysis of the time series for the blood 
glucose reveal a large distribution of spectral 
components in the frequency range 0 – 1.5 mHz for 
diabetes patients P1 (injected with insulin), P2 (with 
insulin pump) and P3 patient (normal subject). The 
figures 4, 5 (for P1), 8 along with 9 (for P2) and 12 
and 13 (for P3) show the spectral power density for 
the blood glucose time series recorded during two 
consecutive days (D1 and D2). Despite the present 
perturbations the reseamblence of the two spectrums 
is obvious. 
     The following step has been to eliminate the 
continuous component (detrend) from each signal 
and filter it. These signals have been through an 
order 15, low-pass filter. The difference between the 
thus obtained signals corresponding to D1 and D2 
has been calculated. The results are represented in 
figures 6, 10 and 14. Note the reduced signal 
amplitude at the healthy patient.  
     The spectral analysis of the signal difference 
reveals the following situations: 

• The presence of the spectral components in 
the very low frequency range (0 – 0.7 mHz), 
for every investigated patients (P1, P2 and 
P3). 
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Fig. 1. Time evolution of the glucose concentration 

for the P1 patient in the day D1.  
INS – insulin treatment, M – meal. 
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Fig. 2. Time evolution of the glucose concentration 
for the P2 patient.  

INS – insulin treatment, M – meal. 
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Fig. 3. Time evolution of the glucose concentration 

for the P3 patient.  
M – meal. 
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Fig.4. Power spectral density function for the patient 

P1 in the day D1. 
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Fig.5. Power spectral density function for the patient 

P1 in the day D2. 
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Fig.6. The difference signal (Diff-P1) beetwen the 
filtered and detrended blood glucose concentrations 
for patient P1 recorded in the first and second day. 
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Fig.7. Power spectral density function for the 
difference signal  Diff-P1. 
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Fig.8. Power spectral density function for the patient 

P2 in the day D1. 
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Fig.9. Power spectral density function for the patient 
P2 in the day D2. 
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Fig.10. The difference signal (Diff-P2) beetwen the 
filtered and detrended blood glucose concentrations 
for patient P2 recorded in the first and second day. 
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Fig.11. Power spectral density function for the 
difference signal  Diff-P2. 
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Fig.12. Power spectral density function for the 
patient P3 in the day D1. 
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Fig.13. Power spectral density function for the 

patient P3 in the day D2. 

0 4 8 12 16 20 24
-30

-20

-10

0

10

20

30

40

Time (hours)

A
m

pl
itu

de

 
 
Fig.14. The difference signal (Diff-P3) beetwen the 
filtered and detrended blood glucose concentrations 
for patient P3 recorded in the first and second day. 
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Fig.15. Power spectral density function for the 
difference signal  Diff-P3. 

 
• A decrease in amplitude of the components 

for the high frequency range (0.7 – 1.5 
mHz). 

• The decrease is much more noticeable in the 
case of healthy subjects (Fig. 14) in 
comparisons to the diabetes patients (Fig. 6 
and 10).   

 
 
4   Conclusion 
The physiological interpretation of these 
phenomenon is very difficult in the absence of the 
experimental studies in this field of interest. 
Our study shows that the blood control system 
posesses high frequency components that reproduce 
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daily. The low frequency components are not 
identical from one day to the other and correspond 
to the internal oscillations of the control system.  
This finding suggests that the control system reacts  
identically on a short term but takes on different 
actions on longer term. 
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