MATHEMATICS AND COMPUTERS IN BIOLOGY AND CHEMISTRY

Proceedings of the 9th WSEAS International Conference on MATHEMATICS & COMPUTERS IN BIOLOGY & CHEMISTRY (MCBC '08)

Bucharest, Romania, June 24-26, 2008

Host and Sponsor:
ACADEMIA ROMANA

Scientific Sponsors

National University Research Council

University Politehnica of Bucharest

Technical University of Cluj - Napoca

Executive Agency for Higher Education and Research Funding (UEFISCSU)

Recent Advances in Biology and Biomedicine
A Series of Reference Books and Textbooks

Published by WSEAS Press
www.wseas.org

ISBN: 978-960-6766-75-6
ISSN 1790-5125
International Program Committee Members:

Haiyi Zhang, CANADA
Sen Chi Yu, TAIWAN
Wei Xia, CANADA
Richard Willgoss, AUSTRALIA
Lamberto Tronchin, ITALY
Jorge A. Tejedor, SPAIN
Reza Tavakkoli-Moghadam, IRAN
Yoshiaki Tadokoro, JAPAN
Chang-kyo Suh, KOREA
Amritasu Sinha, RWANDA
Arkadiusz Salski, GERMANY
Sunint Saini, INDIA
Michael Rosenman, AUSTRALIA
Jong Il Rhee, KOREA
Mohammadreza Rafiei, IRAN
Miroslav Pokorny, CZECH REPUBLIC
Anna Perez, VENEZUELA
Zeljko Panian, CROATIA (HRVATSKA)
Edson Paladini, BRAZIL
Ahmad Moreb, SAUDI ARABIA
Gholam Ali Montazer, IRAN
Azlinah Mohamed, MALAYSIA
Patricia Milligan, UNITED STATES
Jesus Medel, MEXICO
Arie Maharshak, ISRAEL
Edwirde Luiz Silva, SPAIN
James Liu, HONG KONG S.A.R.
Yuan-Horng Lin, TAIWAN
Hankyu Lim, KOREA
Stanislava Labatova, SLOVAKIA
Selva Kumar, INDIA
Walter Krümer, GERMANY
Andrei Kolyshkin, LATVIA
Vladimir Kazakov, MEXICO
Elza Jurun, CROATIA (HRVATSKA)
Zhang Jie, CHINA
Girija Jayaraman, INDIA
Shabiul Islam, MALAYSIA
Qiang Hua, CHINA
Chih-hung Hsu, Please, select:
Adolfas Gaigalas, UNITED STATES
Rudolf Freund, AUSTRIA
Kwoting Fang, TAIWAN
Sylvia Encheva, NORWAY
Alexandar Djordjevich, HONG KONG S.A.R.
David Chiu, CANADA
Igor Bernik, SLOVENIA
Mojca Bernik, SLOVENIA
Azam Beg, UNITED ARAB EMIRATES
Noor Habibah Arshad, MALAYSIA
Mohammadreza Anvari, CANADA
Kakuro Amasaka, JAPAN
Rossella Agliardi, ITALY
Elettra Agliardi, ITALY
Shuzlina Abdul Rahman, MALAYSIA
Preface

This book contains the proceedings of the 9th WSEAS International Conference on MATHEMATICS & COMPUTERS IN BIOLOGY & CHEMISTRY (MCBC '08) which was held in Bucharest, Romania, June 24-26, 2008. This conference aims to disseminate the latest research and applications in Mathematical Models (Deterministic and Stochastic), Modelling and Simulation, Experiments and Computer Analysis, Statistics, Optimization, Computer Science (Data Bases, Data Structures, Software Engineering, Reliability), Computational Intelligence (NN, FL and EC), Practical Methods, Bio-Engineering, Chemical Engineering and other relevant topics and applications.

The friendliness and openness of the WSEAS conferences, adds to their ability to grow by constantly attracting young researchers. The WSEAS Conferences attract a large number of well-established and leading researchers in various areas of Science and Engineering as you can see from http://www.wseas.org/reports. Your feedback encourages the society to go ahead as you can see in http://www.worldses.org/feedback.htm

The contents of this Book are also published in the CD-ROM Proceedings of the Conference. Both will be sent to the WSEAS collaborating indices after the conference: www.worldses.org/indexes

In addition, papers of this book are permanently available to all the scientific community via the WSEAS E-Library.

Expanded and enhanced versions of papers published in this conference proceedings are also going to be considered for possible publication in one of the WSEAS journals that participate in the major International Scientific Indices (Elsevier, Scopus, EI, ACM, Compendex, INSPEC, CSA see: www.worldses.org/indexes) these papers must be of high-quality (break-through work) and a new round of a very strict review will follow. (No additional fee will be required for the publication of the extended version in a journal). WSEAS has also collaboration with several other international publishers and all these excellent papers of this volume could be further improved, could be extended and could be enhanced for possible additional evaluation in one of the editions of these international publishers.

Finally, we cordially thank all the people of WSEAS for their efforts to maintain the high scientific level of conferences, proceedings and journals.
Table of Contents

<table>
<thead>
<tr>
<th>Lecture I: Phenomenological Universalities as a new tool for experimental and cross-disciplinary research</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pier Paolo Delsanto</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecture II: Nucleic Acid Structural Properties Identified by Genomic Signal Analysis</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paul Dan Cristea</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecture III: Processing of Polymer Matrix Nanocomposites with Carbon Nanotube</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Josè M. Kenny</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecture IV: Complex Procedure for Evaluating the Fatigue Wear of Tibial Inserts for Patients with Abnormal Walking</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lucian Capitanu</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecture V: EU Objective of 120g CO2/km Emission for New Cars a Challenge for Tribology</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ivan Iliuc</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecture VI: New trends in multivariate approximation and optimization</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dana Simian</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statistical Analysis of the Blood Glucose Data for Automated Diagnosis</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eugen Iancu, Ionela Iancu, Maria Moța</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comparative study on obtaining volatile oils from mentha piperit</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mosteanu Daniel, Barsan Ghita, Giurgiu Luminita, Trefas Lucian</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phenomenological Universalities as a new tool for experimental and cross-disciplinary research</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pier Paolo Delsanto, A.S. Gliozzi</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A comparison of different instances of Phenomenological Universalities</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pier Paolo Delsanto, A. S. Gliozzi and F. Bosia</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>New Trends in Analytical and Numerical Computation</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marcel Migdalovici</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Integrated system for the assessment and control of the CO2 emissions released in iron and steel industry</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion Melinte, Mihaela Balanescu, Gheorghe Surugiu, Adrian Tantau, Octavian Melinte, Daniel Mitroi</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Similitude Models of some Growth Processes</th>
<th>54</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dan-Alexandru Iordache, Pier Paolo Delsanto, Viorica Iordache</td>
<td></td>
</tr>
</tbody>
</table>
Correlational Analysis of Superconducting Mixed Copper Oxides
Cristina Zarioiu, V.G. Lascu, Lidia Petrova, Anca Novac

EU Objective of 120g CO2/km Emission for New Cars, a Challenger for Tribology
Ivan Iliuc

Linear Polymers Transport through Nanometer Pores under Constant Force
Viorel-Puiu Paun

On the dynamical model of the human knee joint
Valerica Mosnegut, Veturia Chiroiu, Lucian Capitanu, Mihai Popescu

Mathematical model for isosbestic points of porphyrins. Implications in cryotherapy and photodynamic therapy
Rodica-Mariana Ion

A fractal model for simulation of biological growth processes
Radu Dobrescu Loretta Ichim Stefan Mocanu Stefan Popa

Grid Computing Services for Parallel Algorithms in Medicine and Biology
Dragos Arotaritei, Marius Turnea, Toma Marius Cristian, Mihai Ilea

Cardio vascular surgery - simulation based medical intervention
Sandor I. Bernad, Tiberiu Barbat, Elena S. Bernad, Romeo Susan-Resiga

Specific Attack Adjusted Bayesian Network for Intrusion Detection System
Milan Tuba, Dusan Bulatovic, Olga Miljkovic, Dana Simian

Molecular Dynamics Simulation of Palm-Based Nano-emulsion System
Mohd Basyaruddin Abd Rahman, Muhammad Alif Mohd Latif, Mahiran Basri, Abu Bakar Salleh And Raja Noor Zaliha Abd Rahman

Physisorption of Aliphatic Aldehydes on a Model Silicate Brönsted Site: A Quantum Chemistry Study
Cristina Iuga And Annik Vivier-Bunge

Computer Simulation of Femur Fractures in the Case of Car Accidents
Cris Precup, Antoanela Naaji, Csongor Toth, Arpad Toth

Engineering Aspects of the Osteoarticular Reconstruction with Stem Cells. Study on Animals
Mircea Drencean, Mirela Toth-Tascau, Lucian Rusu, Dan Ioan Stoia, Karoly Menyhardt

Mathematical coordination of motion through obstacles of dynamic systems endowed with artificial sight
Ovidiu Ilie Sandru

Processing of Polymer Matrix Nanocomposites with Carbon Nanotubes
J.M. Kenny, L. Valentini, L. Torre

Theoretical Studies of Interactions between Imidazopyridopyrimidines and Guanine
Jiri Czernek
Study on the relationship EMG-temperature, for the forearm muscles, under isotonic effort 148
Mihai Munteanu, Dan Rafiroiu, Curaj Adrian, Lucian Velea, Petru Dobra, Daniel Mitroi

NanoWell Array-based Digital BioChip Platform 154
Tomoji Kawai and Heayeon Lee

On picard iteration and lie series in analytic evolutionary problems of physics 157
S. Steri, J. Quartieri, G. Volzone, C. Guarnaccia

A nonlinear model for controlling the evolution of malignant cells 164
J. Quartieri, S. Steri, G. Volzone, C. Guarnaccia

A model of switching feeding behavior for predators with prey interspecific competition 170
Valerio Ajraldi Ezio Venturino

The Effects of Drug Resistant on Tuberculosis Transmission 176
Silvia Martorano-Raimundo Ezio Venturino

Nucleic Acid Structural Properties Identified by Genomic Signal Analysis 182
Paul Dan Cristea

Ranking and Selection of Features for Improved Prediction of Nucleosome Occupancy and Modification 188
Masanori Higashihara, Jovan David Rebolledo-Mendez, Yoichi Yamada, Kenji Satou

Estimation of Identification Methods of Gene Clusters Using GO Term Annotations from a Hierarchical Cluster Tree 194
Yoichi Yamada, Yuki Miyata, Masanori Higashihara, Kenji Satou

Non-contact and non-invasive photonic device for qualitative fungal contamination control 199
Laurentiu Angheluta, Joakim Striber, Roxana Radvan, Ioana Gomoia, Vivian Dragomir

A Web Mining Logical Framework for Heterogeneous Biological Ontology Data 206
Ioan Pop

Multi-Agent System model for optimization the monitoring process within a Natura 2000 site 212
Dana Simian, Florin Stoica, Angela Curtean-Banaduc

Approaches to cognitive support in biomedical knowledge-based systems 217
Florin Stoica, Dana Simian

Complex Procedure for Evaluating the Fatigue Wear of Tibial Inserts for Patients with Abnormal Walking 223
Lucian Capitanu, Luigi Vladareanu, Aron Iarovici, Justin Onisoru

Static bifurcation diagrams and the universal unfolding for cancer cell population model 229
Vladmir Balan and Ileana Rodica Nicola

Author Index 234
Plenary Lecture I

Phenomenological Universalities as a new tool for experimental and cross-disciplinary research

Professor Pier Paolo Delsanto
Chair of Structural Mechanics, Bioindustry Park of Canavese
Bioinformatics and High Performance Computing Lab
Politecnico of Torino,
ITALY
E-mail: pier.delsanto@polito.it

Abstract: Phenomenological Universalities represent a new tool for the classification and interpretation of observed or experimental data in the context of cross-disciplinary research. Also they can act as a “magnifying glass” to finetune the analysis and to quantify the difference among similarly looking datasets. In particular, the class U2 is of special relevance, since it includes, as subcases, all growth models proposed to date. In this presentation we show that it may be applied, in a simple fashion, to a variety of problems of interest in biomedicine and in the context of elastodynamics. The results suggest the application of different fitting equations from the ones which are currently adopted, and the use, in several contexts, of fractal dimensioned variables.

Brief Biography of the Speaker: Academic degrees: Laurea (MS.) in Physics, University of Torino, 1963; Ph.D. in Physics, University of Torino, 1965; "Libera Docenza" (Habilitation) in Physics, University of Roma, 1971. Positions: 1966-1969 University of Frankfurt, Germany. (Fellow of the A. von Humboldt Stiftung and Research Associate), 1969-1984 University of Puerto Rico, Mayaguez, USA. (Professor with tenure). 1982-1983 Duke University, Durham, NC, USA (Visiting Professor – In sabbatical leave from the University of Puerto Rico). 1984-1987 Naval Research Laboratory, Washington D.C. (Research Physicist). 1987 to date: Politecnico di Torino (Italy), Full Professor. Also, for the years 1994-2000: Director of the National Institute for Condensed Matter Physics (INFM)-Politecnico di Torino Research Unit. Miscellanea: Coordinator of many national and international research projects (1980-2003), e.g. BRITE EURAM, COPERNICUS (Europe), and NSF, ARO, NATO (USA). Coordinator of the European Science Foundation programme NATEMIS, 2000-2005, with seven countries involved. Consultant to the Naval Research Laboratory, 1987-1999 and 2003-2004 and to the Los Alamos National Laboratory, 2000-2002. Also, from 2004 Consultant to the NIH supported “Center for the development of a virtual tumor” (CVIT), Boston, Mass. Co-leader of the Modeling-Simulation Working Package of the EU-funded AERONEWS Project, (6th Framework Programme for European Scientific Research), see www.kulac.ac.be/AERONEWS. Invited Speaker, Guest Editor, Chair and/or Co-Organizer in many international conferences and meetings. Editor of the books: 1)“New Perspectives on Problems in Classical and Quantum Physics”, Gordon and Breach, 1997-1998, in two volumes. 2) “The universality of Nonclassical Nonlinearity, with applications to NDE and Ultrasonics”, Springer, 2006. Editor-in-chief (one out of three) of the electronic journal “Theoretical Biology and Medical Modelling”. Professor ad Honorem at the Universities of Puerto Rico, USA and Brazov, Romania. Invited Professor (or equivalent) at several Universities, such as Melbourne (Australia), Montreal (Canada), Cagliari (Italy), etc. Outstanding Performance Award: Naval Research Laboratory, 1985 and 1986. A.Berman Research Publication Award for outstanding paper: Naval Research Laboratory, 1994.

ISBN: 978-960-6766-75-6
ISSN 1790-5125
Plenary Lecture II
Nucleic Acid Structural Properties Identified by Genomic Signal Analysis

Prof. Paul Dan Cristea
Corresponding Member of Romanian Academy
Director of the Romanian Bioinformatics Society
Biomedical Engineering Centre,
University "Politehnica" of Bucharest,
ROMANIA
E-mail: pcristea@dsp.pub.ro
Website: http://www.acad.ro/academia2002/acadrom/pag_ist.htm

Abstract: The conversion of nucleotide sequences into digital genomic signals allows using signal processing methods for the analysis of genomic data. This approach reveals surprising regularities in the distribution of nucleotides and pairs of nucleotides, in both prokaryotes and eukaryotes. These structural and statistical restrictions of genomic sequences would be difficult to identify by using only statistical and pattern matching methods, as in standard symbolic sequence analysis. Long range regularities make the structure of a genome be less like that of a "plain text", which simply conveys a semantics in accordance to a grammar, and more like that of a "poem", which obeys additional structural rules that give "rhythm" and "rhyme". A direct application of these regularities is predicting nucleotides in a sequence, when knowing the preceding ones, in a way similar to time series prediction. This approach attempts to model processes such as DNA replication, DNA transcription, or mRNA translation, and allows to explore the possibility of low level error correction. Moreover, genomic signal analysis (GSA) reveals the hidden ancestral structure of nucleotide sequences, before their re-structuring under the selective pressure of species separation. GSA is also efficient in the analysis of pathogen variability. This is important for the molecular level detection of mutations that induce drug resistance, providing the clinician with information needed for a fast and accurate decision, and avoiding the lengthy and expensive phenotypic clinical studies requesting pathogen culture. The talk will present results in the molecular study of variability of Human Immunodeficiency Virus, performed in cooperation with Dr. Dan Otelea from the National Institute of Infectious Diseases “Prof.Dr.Matei Bals”, and of Mycobacterium tuberculosis, in cooperation with Dr. Dorina Banica from the National Institute of Pneumophtysiology “Prof. Dr. Marius Nasta”, Bucharest, Romania and Dr. Karin Rodewald, Max-Plank – Institute of Biochemistry, Martinsried, Germany.

Brief Biography of the Speaker: Paul Cristea graduated the Faculty of Electronics and Telecommunications (UPB - University "Politehnica" of Bucharest, Romania, 1962), the Faculty of Physics (University of Bucharest, 1969), and has a Ph.D. in Technical Physics (UPB, 1970). Since then his research and teaching activities covered an large area of Electrical Engineering and related domains including topics like Digital Signal and Image Processing, Genomic Signals, Neural and Evolutionary Systems, Computerized Medical Equipment, Evolutionary Intelligent Agents, Intelligent e-Learning Environments. He is the author or co-author of more than 130 published papers, 11 patents and contributed to more than 20 books in these fields. He is currently affiliated with UPB, the Biomedical Engineering Center (general director) and the Vrije Universiteit Brussel, Belgium, the ETRO Department. He is a corresponding member of the Romanian Academy and director of the Romanian Bioinformatics Society.
Abstract: Carbon nanotubes (CNTs) are innovative materials with enormous potential because of their outstanding mechanical and physical properties [1]. Their utilization to prepare polymer composites is very important in several fields like electromagnetic shielding, touch screens and static charge dissipation. In this regard the possibility to realize a fully integrated nanotube-reinforced epoxy system represents a promise for the preparation of composite materials with outstanding mechanical properties and multi-functional features [2,3]. However, the incorporation of nanotubes is not a trivial task mainly if a good dispersion for a chemical grafting to the polymer matrix are mandatory to maximize the advantage of nanotube reinforcement. Here we report our recent activities on the processing of polymer matrix nanocomposites with carbon nanotubes and, in particular, the chemorheological aspects that affect the interaction of nanofillers and the matrix. Specific models are applied to describe the kinetics of the different reactive processes and the changes of the polymer structure. Regarding the polymer-nanotube interaction, the plasma treatment for the functionalization of carbon nanotubes represents a novel approach easy to scale up to industrial application. More recently there were a lot of attempts to fluorinate carbon nanotube sidewalls in such manner [4-7]. In this work we report how plasma functionalized single-walled carbon nanotubes (F-CNTs) can be used as precursors for the compatibilization with polymeric matrices for preparing an integrated nanotube composite material. The results show the emergence of specific interactions of cross-linking between thermosetting matrix and amino-functionalized CNTs during the cure reaction with an improvement of the mechanical properties with respect to those prepared with un-functionalized CNTs. The possibility of using functionalized CNTs to make possible a “mix and match” approach towards classes of hybrid materials will be reported suggesting the possibility of tuning the electrical properties by combining the electric field in the assembling processing. Moreover it was demonstrated as electrophoretically deposited CNT thin films provide a simple route to obtain layered functional nanostructures by growing homogeneous films of carbon nanotubes and infiltrating polymer or monomer, followed by in situ polymerization. Some examples where electrophoretically deposited SWCNT films were infiltrated with monomer and then the monomer was polymerized are reported [8].

Brief Biography of the Speaker: Professor José M. Kenny got his PhD in Chemical Engineering from the University of South (Bahia Blanca, Argentina). He is Full Professor of Materials Science and Technology at the University of Perugia, where he also teaches Polymer Technology and Materials Nanotechnology. Moreover, Prof. Kenny is the President of the Board of the ECNP: European Centre for Nanostructured Polymers installed by the 11 core-partners of the European Network of Excellence NANOFUN-POLY. Prof. Kenny is the Director of the International PhD Program on Materials Nanotechnology and of the European Master on Polymer Nanotechnology coordinated by the University of Perugia in collaboration with several European Universities. Both programs are supported by the European Network of Excellence NANOFUN-POLY and the ECNP coordinated by Prof. Kenny.During his career Prof. Kenny has been visiting and research professor in the following universities: University of Naples (1984-1991), University of Connecticut: (1989) University of Washington (1990), Washington University of Saint Louis (1991). He has published more than 300 papers in international scientific journals and books related to the processing technologies of polymers, composites and nanocomposites. Prof.Kenny has directed
more than 100 final projects for the degree in Materials Engineering and more than 30 PhD theses on Industrial Engineering and Materials Nanotechnology. He has coordinated several Italian and international research projects and is member of several scientific societies: he is currently Past-President of the SAMPE Europe (Society for the Advancement of Material and Process Engineering) and recently has been elected member of the Board of the Italian Industrial Association of Composite Materials.
Plenary Lecture IV
Complex Procedure for Evaluating the Fatigue Wear of Tibial Inserts for Patients with Abnormal Walking

Professor Lucian Capitanu
Department of Tribology
Institute of Solid Mechanics of Romanian Academy
Constantin Mille 15, Bucharest
ROMANIA
E-mail: luciancapitanu@yahoo.com
Website: http://www.imsar.ro

Co-Authors:
Luigi Vladareanu, Aron Iarovici, Justin Onisoru
Department of Continuum Mechanics
Institute of Solid Mechanics of Romanian Academy
Constantin Mille 15, Bucharest
ROMANIA

Abstract: In a previous paper [1] the authors established the basis for implementing control strategies for some Knee Prosthesis Simulator by intermediate of Programmable Logical Controllers in Open Architecture structure. The authors describe there a method for estimating the fatigue wear based on experimental tests and numerical simulations of tribological behavior of the Knee Prosthesis under common activities loading. But the loading cycles are standard ones from the literature, it means that could be significant differences between the loadings used in simulator and the real ones especially when abnormal walking is still maintaining after Knee Arthroplasty. It results that, due to the cumulative nature of fatigue wear, these differences will accumulate leading to inaccurate predictions on prosthesis fatigue. This work try to present a more complex procedure which allows for transferring the real loads from the patient artificial knee to the knee simulator control system, by intermediate of kinematic acquisition, evaluation of joint loadings and dynamic simulation of joint contact. Practically, the data resulting from motion analysis of the patient activities will be processed by a specialized code (AnyBody Modelling System) which will determinate the motion dynamic loadings of the joint. Based on these processed data, a detailed joint tribological model will allow for determination of contact dynamics based on Finite Element Analyses and will generate the customized evolution of each one of the controlled knee simulator degrees of freedoms. Use of the method described here will generally improve the accuracy of lifetime predictions based on experimental data obtained in a Knee Prosthesis Simulator, allowing for customizing the tests for each patient.

Brief Biography of the Speaker: Title of qualification awarded: Senior Researcher; Head of Tribology and Biotribology Department, Scientific Manager of Institute of Solid Mechanics of Romanian Academy. Principal subjects-occupational skills covered: Tribology of classic materials, fatigue wear, lubrication, contact mechanics; Tribology of plastics and composite materials; Biotribology of Knee and Hip Endoprostheses. Doctorate coordinator in Tribology and Biotribology. Main subjects and professional skills: PhD studies related to friction and wear of thermoplastics reinforced with glass fibers. Member of Academic Associations: Full Member of European Society of Biomechanics (ESB), Founder member of Romanian Association of Tribology. Main author of 4 books in tribology of composite materials and biotribology of orthopedic prostheses.
Plenary Lecture V
EU Objective of 120g CO2/km Emission for New Cars a Challenge for Tribology

Professor Ivan Iliuc
Department of Tribology
Institute of Solid Mechanics of Romanian Academy
Romanian Academy,
ROMANIA
E-mail: iiliuc@yahoo.com

Abstract: Passenger cars produce about 12% of overall EU GHG emissions (CO2) and transport sector with about 20% is the second biggest emitter of GHG among all sources. Since 1990, EU has reduced transport emissions by 5% but the contribution of road transport increased by 26%. In order to accomplish the Kyoto requirements it is clear that transport emissions should also be reduced. A new decision of EU Commission from Feb 2007 specific the average emission in EU 27 should be 120 g/km by 2012. For several decades the most cost-effective method of reducing CO2 emissions from cars will be to improve fuel efficiency. There are many ways of further improving the fuel efficiency of conventional engines and cars, among them: ignition systems that ensure complete combustion of the fuel available, improved compression at low engine loads, engine and gear friction reduction, six-speed manual transmission, stop-go systems, cylinder deactivation and other. Trybology will help to realize the above improvement by using low friction lubricant, adequate additive and modifying the frictional surface. The paper presents the problems and solutions, which were found.

Plenary Lecture VI
New trends in multivariate approximation and optimization

Associate Professor Dana Simian
Department of Computer Science,
Faculty of Sciences,
University Lucian Blaga of Sibiu
Romania
E-mail: dana.simian@ulbsibiu.ro

Abstract: Multivariate approximation and optimization appear in modeling real systems. The aim of this lecture is to present new algorithms and computational techniques for solving practical problems of approximation and optimization and to make a comparison between them. In the first part, genetic algorithms, ant and wasp behavior algorithms are taking into account and applied to agent-based approaches to manufacturing scheduling and control in distributed manufacturing systems and to adaptive multiagent systems. In the second part we present new results in multivariate interpolation and polyspline and their applications in image processing and classification theory. A reformulation of the problem of multivariate interpolation which allows the use of methods taken from artificial intelligence make a connection between the two parts of the presentation. As a conclusion, problems from many other fields, like chemistry, biology, medicine which can be solve using the presented algorithms and techniques are presented.

Brief Biography of the Speaker: Dana Simian received the diploma in engineering from the University of Sibiu, Romania, the diploma in Mathematics - Informatics from the University Babes-Bolyai of Cluj-Napoca, Romania and the Ph.D. in Mathematics from Babes-Bolyai University of Cluj-Napoca, She is Assoc. Prof. to the Department of Computer Science, Faculty of Sciences, University Lucian Blaga of Sibiu, Romania. She has a great experience in algorithms and numerical methods for modelling and optimization. She organized two special sessions within WSEAS conferences and an international workshop on topics related to modeling, approximation and optimization. She was a member of many scientific committees of international conferences. She has published more than 40 papers on a wide variety of subjects relating to multivariate interpolation, optimization, modeling, multiagent systems. She is co-editor of 4 WSEAS book series. She is author of 10 scientific books. She has been included in “Who is Who in the World” in 2006. She participated in many research grants.