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1 Introduction 
    Roughly speaking malignancy is a process in 
which an imbalance exists between relatively few 
losses and much more new births in a cellular 
colony with an almost certain bad epilog for the 
host. Controlled evolution happens when therapist 
attempts either to equilibrate those two moments in 
the colony life or to extinguish colony, e.g. using a 
certain remedy administered to the host or, more 
effectively, a cocktail of drugs. 
    In a previous paper, [1], we discussed some 
biological foundations of our mathematical 
representation of the attempt to invert that balance 
by means of drug therapy. In it we cast some ideas 
for the acquirement of the experimental data to be 
utilized in a computer program for practical use. In 
particular, in [2], we discussed an integration 
method, due to Gröbner, and only improved by us, 
which, by Lie series of the generalized type, allows 
the representation of the solution components. 
    Similarly to Dubin’s one [3], the model 
representing controlled malignancy may be 
described by the following controlled stochastic 
process (forward Kolmogorov equations) supposing 
a sole controller factor h(t) for the random variable 
(r.v.) X(t)=n (number of cells in the colony): 
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    k,,µλ  are parameters of the biology of the 
process, representing the growth, the spontaneous 
death and the immunological response of the host. 
   In (1) a procedure of "symmetrization of 
variables" has been operated by adding the last 
equation and the corresponding initial condition. 
This procedure turns the process into an autonomous 
one, i.e. with no explicit dependence on t. In [4] we 
already found the solution of problem (1), for an 
assigned h(t).   
    In the present paper we suppose the controller 
depends on the concentration in tumor of the drug 
administered. We have to face the following tasks: 
    1) writing an initial value problem equivalent to 
the above (1) concerning with functions linked to 
the moments of the X variable, which, in its turn, 
represents the number of malignant cells. This 
equivalent representation will be also useful to 
determine the mean and variance of the process, in 
drug presence or in spontaneous evolution (Dubin’s 
model [3]); 
    2) writing the balance equations of the drug in the 
host (only announced in [1]); 
    3) assembling the stochastic process with the drug 
balance equations. So obtaining a nonlinear model 
which will be integrated, by Gröbner’s method, in 
order to constitute the basis for a suitable answer to 
the following problem of optimization: what is the 
drug intake which ensures the mean to be stationary 
and minimum at an assigned instant T from the 
beginning of therapy, compatibly with the necessity 
to minimize toxicity on noble parenchymal organs? 
In a forthcoming paper we will give an appropriate 
answer to this question, based on Pontryagin’s 
principle. 
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2 Equivalent Cauchy problem, mean 
and variance for the random 
variable 
 

    The evolution of a tumoral colony in drug 
absence is described by the above initial value 
problem (1) when the controller is missing: h(t) = 0. 
By introducing the probability generating function 
(p.g.f.): 
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We can rewrite the birth and death process as an 
equivalent Cauchy problem: 
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if on is the initial number of cells in the colony. 
Integrating problem (1) is tantamount to integrating 
the corresponding Cauchy problem (3-4). Making it 
possible is also one of our contributions to the 
Gröbner's method of Lie series [5, 6]. 
    When a factor limiting the neoplasm growth is 
present, the evolution may be described by an 
equation like the following: 
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where F(t,z) is the controller. In this case the 
integration method reported in our note [6] is 
applicable. 
    But the controlled process may also depend by a 
perturbing operator: 
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as in our current model (1). In fact we suppose the 
existence of a killer agent, which supplies a 
chemical death to the spontaneous cellular loss or to 
the one due to immunological response of the host. 
In other words in our controlled process the natural 
evolution is perturbed by a differential operator like: 
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and not by a finite addend represented by an analytic 
function like F(t,z). Furthermore if h(t) is a small 
perturbing factor then the perturbative Poincaré 
method is available [6]. It consists, roughly 
speaking, in expanding the solution in terms of a 
power series of h(t), with the possibility of retaining 
only the first few addends according to the h(t) 
weight. 
    Therefore the above Cauchy problem describing 
controlled or spontaneous evolution ( 0)( ≠th  and 

0)( =th  respectively) will have its unique solution 
as the following double series: 
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    where the components of the solution of (1) have 
the meaning of derivatives of the p.g.f., i.e. the 
probabilities that the random variable X takes its 
possible values: 0, 1, … . 

    In the above formula tDe  is the Lie operator, [7-
9], [5] with a generalized Gröbner differential 
operator D, i.e. a symbolic series of first order 
differential addends, which in the present case reads: 
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where the coefficients are given by the r.h.s. of the 
forward Kolmogorov equation (1), whose arguments 
have been now transformed into parameters. 
    Since the evolutionary operator A is linear and the 
coefficients of the differential terms are 
polynomials,  

P(z,t) is continuously differentiable at z=1. 
    So, for example, problem (1) with h(t)=0 is 
equivalent to the following one: 
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where iη  represents the mean of r.v. product. In fact 
the new variables are related to momenta of X, so 
the mean E(X(t)) and the variance Var(X(t)) of the 
random variable (r.v.) X are respectively: 

)())(( 1 ttXE η=  
and 

2
112 ))(()()())(( ttttXVar ηηη −+=  . 

    Therefore the solution of (9) allows us to 
immediately find these two stochastic parameters.  
    We plan to develop a computer software in order 
to find these two fundamental stochastic parameters 
both in the spontaneous and in the controlled (by 
drugs) evolution. 

 
3 Drug balance equations 

 
    1V , (constant) apparent distribution volume of 
drug in blood; 
    )(2 tV , (variable) tumor volume; 

    cellV , (constant) single cell volume; 

    inQ′  , (variable) rate of drug intake; 

    12α , (constant) diffusion coefficient of the drug 
from blood towards tumor; 
    )(21 tα , (variable) diffusion coefficient of the drug 
from tumor towards the blood stream; 
    12a , (constant) transfer rate per unit volume from 
blood to tumor, such that: 

12112 aV=α  ; 

    21a , (constant) transfer rate per unit volume from 
tumor to blood, such that: 

21221 aV=α  ; 

    1C , (variable) drug concentration in blood; 

    nC ,2 , (variable) drug concentration in tumor; 

    metclV ][ ′ , (constant) drug clearance due to liver 
metabolism; 
    tumclV ][ ′ , (constant) drug clearance due to tumor 
metabolism; 
    kidclV ][ ′ , (constant) drug clearance due to kidney 
depuration; 
    E(X), (variable) mean of r.v. X, number of 
malignant cells. 
    Now we must add to the above system (9-10) 
(equivalent to the forward Kolmogorov's equations 
(1) ) the equations of the drug balance in the host. In 
our previous paper [1] we discussed the biological 
methods which permit the acquirement of all data, 
which we assumed known in balance equations. 
Now we are going to give a biophysical foundation 
to the writing of those equations. In doing so we 

shall follow the theory of the two compartments, 
taking into account the expansion of one of them. At 
this aim we shall modify the equation of diffusion of 
the drug in tumor. In the end the presence of a 
linkage between the controller h(t) and the drug 
concentration in tumor will lead to a nonlinear initial 
value problem which we will integrate by Lie series 
[5], [7-9]. 
    Let’s suppose that after a rapid intravenous 
injection in bolus, a slow maintenance by infusion of 
the drug is administered. In order to write the 
balance equations, which describe the behavior of 
the drug in the host, let us assume what follows: 
    1) )(2 tV  the current volume of the colony, 1V  the 
apparent distribution volume of drug in blood, 
which is supposed to remain constant; 
    2)the rate of diffusion between the two 
compartments (1 blood - 2 tumoral colony) depends 
on two different parameters: 12α  for diffusion from 

1 to 2 and 21α  in the opposite direction; 

    3) the drug is removed from 1V  both by renal 
excretion and chiefly by liver metabolic degradation. 
    Then if 
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is the rate intake by continuous intravenous infusion, 
we can write the following drug balance equations: 
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    where, m is the amount of drug molecules in 
tumor, nCC ,21 ,  are drug concentrations in blood 

and in a tumor of nX =  cells. Furthermore: 

 
dt

dm
CVCV n =− )( ,22211112 αα      (12) 

is the rate of the exchangeable aliquot of drug 
between the two compartments blood stream and 
tumoral colony. Besides 

 kidcltumclmetcl VVV ][,][,][ ′′  ,   (13) 
are the constant clearances. The first one is due to 
metabolism of the drug in liver. The second term 
takes into account the metabolic degradation of drug 
due to the tumor itself and the last one is due to 
renal depuration. 
    In particular we have assumed that the rate of 
drug presence in colony: i.e. free molecules and the 
ones combined to cellular receptors, with these two 
fractions in chemical equilibrium, through the same 
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coefficients 12α , 21α , depends from the rates of 
diffusion from blood to tumor and vice versa. 
    Note that if 2V  represents the current colony 
volume, whose evolution is perturbed by the drug, it 
may be esteemed as follows: 
 

(2 =V mean of () ×X average cellular volume ) =  

    cellVXE ×= )(  , 
where we assumed, for simplicity, an average 
volume of the cells sample cellV  (even though 
malignancy can be characterized by some variability 
in the cellular volume). E(X), mean value of the 
random variable, esteems the current number of 
cells in the colony, if the mean well resumes the 
random variable, i.e. in hypothesis of little variance. 
    Now the balance equations of the drug can be so 
rewritten: 
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     Then if we add the above balance equations (14) 
to the previous system (9-10), and if (as we are 
going to show in what follow) the controller h(t) 
may be expressed by nC ,2 , we achieve a complete 

initial value problem describing the controlled 
malignant process. By means of this system we can 
reach the important goal to modulate the drug 
concentration in blood and in tumor so that the 
maximum positive effect is obtained, i.e. being able 
to minimize E(X) after a suitable limited time 
interval in order to restrain the toxicity of drug on 
noble parenchymal organs. 
    Then if a daily range may be established in order 
to avoid toxicity, the temporal administration 
function must be modulated in time in such a way 
that the drug amount present in tumor increases 
towards an optimal value. This is one of our major 
aims we pursue in this research. 
 
 

4 Dependence of h(t) on drug 
concentration 

 
    Let us remember here some our assumptions also 
present in our previous note [1] in order to link in a 
simple model cellular death to tumoral concentration 

of drug nC ,2 , which is supposed in equilibrium with 

the blood concentration. In fact we can suppose 
chemical death depends on tq ∆− )1( , the proportion 
of time in which drug molecules are combined with 
cellular hypothesized receptors: 

 
1)(({ −=∆ tXP , due to chemical death 

)()1(}))(/ totnqntX ∆+∆−== ζ  . 
 
At the chemical equilibrium the same proportion of 
cellular receptors is such that: 
 

rate of detachment = rate of attachment 
   ⇒=−− qnCkqnk n νν ,211 )1(  
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where: 
     ν is the constant (in the interval of the 
achievement of chemical equilibrium) number of 
receptors per cell, 

    
1
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−
= k

kρ is the dissociation constant of chemical 

equilibrium, 
    )1( qn −ν  receptors attached, qnν  free receptors, 
    then: 
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 It is fundamental to recollect the biological 
foundation of our model. 
 
Conjecture We assume that the drug control is due 
to small rapidly diffusing molecules able to interfere 
with relatively slow activities of macromolecular 
species in cells; since the receptors reproduction 
and the modulation of their concentration in cells 
are certainly slower processes, then: 
ν , the number of receptors per cell, can be 
considered constant; furthermore the duration of the 
chemical linkage of cellular receptors combined 
with drug molecules in cellular population can be 
considered esteemed by the proportion, in the 
sample, of cells attached to drug, in the same 
interval t∆ . Attached cells are detected in the 
sample, e.g. by a radioactive isotope. 
    Then it is founded the introduction, in a single 
drug administration, i.e. in mono-therapy with a 
drug killing malignant cells, of the new parameter in 
Kolmogorov equations (9-10), in the above shape 
(16) and write: 
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 Once these equations are associated to the balance 
equations (14) they constitute a nonlinear initial 
value problem. 
 

 

5 Integration by Lie series of the 
controlled evolution 

 
   The integration by Lie series of the control 
problem is not easy. In previous papers [1, 2, 4-6, 
10-16] we demonstrated the possibility to integrate, 
by Lie generalized series, a differential system 
obtained by a Taylor Transform of an evolutionary 
differential equation having an analytical operator in 
the r.h.s.. This condition is indeed sufficient for the 
existence of the generalized Groebner’s operator 
which, in turn, defines the Lie Series. So in order to 
obtain the solution of system (17) via generalized 
Lie series we can write a symbolic representation of 
a slight different problem strictly linked to it which 
we name "the original system". At this aim we 
perform a Taylor transformation to both sides of the 
evolutionary equation with initial point z =1, naming 
the new unknown functions 

!n
n

n
ηη =′  
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to which now we add the drug balance equations in 
the new unknown functions:  
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Now the "operative” system is reached just rewriting 
the above system with parametric initial conditions. 
These parameters are the components of the 
sequence: ,...),,( 121 εcc . 
Once having written, by means of Lie Series, the 
components of the solution of the operative system 
we obtain the solution to the “original” problem by 
fixing the parameters to the initial conditions. Lie 
Series depends on the Groebner’s operator: 
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and on the Lie operator: 
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The former operator is represented by a symbolic 
series. Its coefficients are the same as in the original 
system but with parametric arguments. 
In general an operator as the first one introduced 
with a symbolic series is an effective differential 
operator if the original initial value problem, which 
it is related to, comes from a Cauchy problem with 
an analytical evolutionary operator “A” obtained by 
a Taylor Transform in a non singular point of domA.  
In fact it has been demonstrated [15] that the 
symbolic series “W”, in a Groebner’s operator such 

as D̂ , defines a linear operator on the S space of the 
Cauchy’s sequences (normed with the Sup-norm) 
provided that the coefficients nΦ form an 
infinitesimal sequence. This condition is sufficient 
to ensure that the sequence of the partial sums of the 
W series converges in norm on S space. 
Let’s now observe that if the sequence of the 
coefficients of W is infinitesimal, it doesn’t change 
if we add a finite number of terms such as the ones 

corresponding to the first two addends in D̂ , so D̂  
is effectively a differential operator on S. In the case 
under study the two more addends come from the 
drug balance equations (18b). 

The second operator (20) is analytic in D̂  and in 
general it exists for every t belonging to domA. In 
particular if the evolutionary operator A (4) does not 
depend explicitly from t (i.e. it is an autonomous 
operator), then the Lie operator (20) exists for every 
value of t. 
Therefore the components of the solution of the 
original problem are: 
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   We stress that from a general point of view Lie 
series converge, as a power series of t, in DomA. In 
the case we just presented we have an autonomous 
system, so convergence is found for every time. On 
the contrary, in a model where h(t) were a known 
function, we would have convergence only in the 
domain of analyticity of h(t). 
 
 

6 Conclusions 
 
In this paper we wrote and integrated, by Gröbner's 
method, the nonlinear controlled process describing 
malignancy if control is due to the action of a sole 
remedy. This study may constitute the matter basis 
for similar more complicated studies when one 
wants to use more than one remedy, as the practice 
suggests, in the fight against tumors. But this model 
is also a starting point for an optimal control 
problem. In fact we must ask ourselves which is the 
best choice of the controller h(t) that optimizes drug 
therapy, optimal control being the minimization of 
the mean of the random variable at any instant T, 
after the beginning of therapy. We shall study the 
questions in a forthcoming paper. 
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Abstract: A mathematical model of a two-prey and one-predator ecosystem with competition for resources among
the prey is analized. Only a segment of conditionally (neutrally) stable equilibrium points are found together
with the interior coexistence equilibrium, which is proven to be inconditionally stable. The latter shows that the
predator population settles to a level which is lower than the one obtained from the original Tansky’s model, the
lower equilibrium value the higher the predators’ mortality. The latter combined also with a large prey carrying
capacity allow the predators’ recovery and the settling of the system toward coexistence.
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1 Introduction

In mathematical biology population theory plays a
fundamental role. Historically indeed, the first model
was formulated by the economist Malthus [21], and
later on corrected for logistic, i.e. more realistic, be-
havior by Verhulst [24, 26, 25]. It is well known that
modern biomathematics originated from the works of
Volterra and Lotka at the beginning of the past cen-
tury, [20, 28]. The researches were prompted by the
unexpected results of fish catches in the Adriatic Sea
in the years immediately after World War I, [6]. Since
then the subject has grown and nowadays several in-
ternational Journals are entirely devoted to this topic.

In the original works of Volterra and Lotka, an
environment is considered in which two populations
interact, and the former, the prey, is the sole food re-
source for the latter. Such an environment is not so
highly unrealistic, as sharks in the ocean feed only on
smaller fish, in the absence of which they certainly
would starve. For terrestrial and avian populations,
the model could be suitably modified to take into ac-
count other food sources. Later developments of the
theory account for food webs, in which several trophic
levels exist and each population is a predator of the
one in the lower trophic level and a source of food for
the one in the upper one. A top predator dominates
the chain, [7, 8]. For recent results on this topic, see
for instance [4, 5, 9, 14, 17, 18], were even chaotic be-
havior and bifurcations can be accounted for in such�
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models. From the ecological viewpoint, food chains
may even be related to eutrophycation of marine envi-
ronments, [2, 3, 19].

Further elaborations of the basic model involve
competition for food among species. A current such
example of the former is given by the American grey
squirrel which has been imported and released in the
European environment. The unwanted consequence is
that the former is gradually replacing the autoctonous
species. But to biologists and environmentalists many
other similar examples in which the exotic species al-
ways outperforms the local one are currently known.
Also of interest are systems describing symbiotic in-
teractions or commensalism, in which both popula-
tions benefit from the presence of the other one. Clas-
sical examples are the anemone and the damsel fish,
the bees pollinating the flowers, but for more recent
findings, see [10, 29].

In real ecosystems, where several species are
present, predators in general have the possibility of
feeding on different prey. This situation has also been
analyzed by mathematical models. More refined for-
mulations thus allow for the predators the active se-
lection of the food source. This choice in the classi-
cal Tanksy model [23] is based essentially on the rel-
ative abundance of the two populations. Further work
on this topic has been carried out in the past years,
[11, 12, 13]. Tansky’s model has been recently mod-
ified, [22, 27] to take into account a logistic term. In
the context of trophic systems, such an idea has been
considered for instance in [15]. Here we introduce
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