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1 Introduction A,k are parameters of the biology of the

Roughly speaking malignancy is a process inprocess, representing the growth, the spontaneous
which an imbalance exists between relatively few death and the immunological response of the host.
losses and much more new births in a cellular In (1) a procedure of "symmetrization of
colony with an almost certain bad epilog for the variables" has been operated by adding the last
host. Controlled evolution happens when therapistequation and the corresponding initial condition.
attempts either to equilibrate those two moments inThis procedure turns the process into an autonomous
the colony life or to extinguish colony, e.g. usiag one, i.e. with no explicit dependence ton [4] we
certain remedy administered to the host or, morealready found the solution of problem (1), for an
effectively, a cocktail of drugs. assigned(t).

In a previous paper, [1], we discussed some In the present paper we suppose the controller
biological foundations of our mathematical depends on the concentration in tumor of the drug
representation of the attempt to invert that batanc administered. We have to face the following tasks:
by means of drug therapy. In it we cast some ideas 1) writing an initial value problem equivaletat
for the acquirement of the experimental data to bethe above (1) concerning with functions linked to
utilized in a computer program for practical use. | the moments of th& variable, which, in its turn,
particular, in [2], we discussed an integration represents the number of malignant cells. This
method, due to Grébner, and only improved by us,equivalent representation will be also useful to
which, by Lie series of the generalized type, alow determine the mean and variance of the process, in
the representation of the solution components. drug presence or in spontaneous evolution (Dubin’s

Similarly to Dubin’s one [3], the model model [3]);
representing controlled malignancy may be 2) writing the balance equations of the drughim
described by the following controlled stochastic host (only announced in [1]);
process (forward Kolmogorov equations) supposing 3) assembling the stochastic process with theg d
a sole controller facton(t) for the random variable balance equations. So obtaining a nonlinear model

(r.v.) X(t)=n (number of cells in the colony): which will be integrated, by Groébner's method, in
Po _( K+h ) —o order to constitute the basis for a suitable angwer
dt H*K+h(0))py =B (P, 1) the following problem of optimization: what is the

drug intake which ensures the mean to be stationary
and minimum at an assigned instahtfrom the

d;” = (A + g +h(t) +kn)np, + A(n-1)p,, + beginning of therapy, compatibly with the necessity
to minimize toxicity on noble parenchymal organs?
(1 +h(t) + k(n+D)n+1)p,, = 1) In a forthcoming paper we will give an appropriate
=0, (P-1s Pras Poy Psa)s N21 answer to this question, based on Pontryagin's
% - principle.
dt

P, @=L p;(0)=0 p,(0)=0,0j#ny,
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2 Equivalent Cauchy problem, mean h(t)(1- Z)i @)
and variance for the random dz '
variable

and not by a finite addend represented by an aoalyt
function like F(t,2). Furthermore ifh(t) is a small
perturbing factor then the perturbative Poincaré
method is available [6]. It consists, roughly
speaking, in expanding the solution in terms of a
power series offi(t), with the possibility of retaining

The evolution of a tumoral colony in drug
absence is described by the above initial value
problem (1) when the controller is missitngt) = O.

By introducing the probability generating function

(p-gt): only the first few addends according to thf)
N n 110"P(t,2) weight.
P(zt) = t t)=—| —~ 2 -
(1) nzz(;p”( )25 P(0) n!{ oz" lzo 2) Therefore the above Cauchy problem describing
We can rewrite the birth and death process as affontrolled or spontanegus eVOI_Ut'Oh(_'O #0 anq
equivalent Cauchy problem: h(t) =0 respectively) will have its unigque solution
as the following double series:
N 12 -1 +k(z- 222 Pz =Y P2 =S 2[e® 8
o AE -2+ -2 +kz=2) 5 (2= P 2" =D 2'[€° 7], om0, cjon, (®)
=0 n=0
3)
- ou _ Au @) where the components of the solution of (1)ehav
ot the meaning of derivatives of the p.g.f., i.e. the
U=1-P u(no)(o 2)=1-7 probabilities that the random variab} takes its

possible values: 0, 1, ... .

_OSt_<°° ’ ZD[OJ{ _ In the above formul&® is the Lie operator, [7-
if n,is the initial number of cells in the colony. 9], [5] with a generalized Grobner differential
Integrating problem (1) is tantamount to integr@tin operator D, i.e. a symbolic series of first order
the corresponding Cauchy problem (3-4). Making it differential addends, which in the present casdsea
possible is also one of our contributions to the 0 0
Grobner's method of Lie series [5, 6]. D= e +0, (7.4, 77)
When a factor limiting the neoplasm growth is . - ° 5
present, the evolution may be described by an +zej(ﬂ—l1ﬂj—l1ﬂj’ﬂj+l)ﬁ

equation like the following: = i

) where the coefficients are given by the r.h.s.hef t
ou =[)I(zz—z)+(,u+k)(1—z)]%+k(z—zz)g+F(t,z) forward Kolmogorov equation (1), whose arguments
ot 0z o7 have been now transformed into parameters.

(5) Since the evolutionary opera®is linear and the
where F(t,2) is the controller. In this case the coefficients of the differential terms are
integration method reported in our note [6] is polynomials,

+

applicable. P(zt) is continuoudly differentiable at z=1.

But the controlled process may also depend by a So, for example, problem (1) with(t)=0 is
perturbing operator: equivalent to the following one:

017
= n-1'/n- +an n+ n+l'/n+ ;nz1
%:[/l(zz—z)+(,u+k)(1—z)]a—u+k(z—zz)@+ ot Pt T Vs ©)
ot 0z 0z’ m@©)=n,=1;7;(0)=0,0#1;
ou where :
+[h(t)(1- 2)]— 6 ‘
[h(t)( )]az (6) o]

as in our current model (1). In fact we suppose the 07 == (10)
existence of a killer agent, which supplies a =l .
chemical death to the spontaneous cellular dogs =E(X(X-D(X -2)...X =i +1));
the one due to immunological response of the host. B, =n(n-1A;

In other words in our controlled process the natura

_ _ A2
evolution is perturbed by a differential operatke! an =M=k

Vi1 = —NK;
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wheres; represents the mean of r.v. product. In factshall follow the theory of the two compartments,

the new variables are related to momentaX,oo
the meanE(X(t)) and the varianc®ar(X(t)) of the
random variable (r.vX are respectively:
E(X (1)) =m(t)
and
Var (X () =17,(t) +m(t) - (m(1)* -
Therefore the solution of (9) allows us to
immediately find these two stochastic parameters.

taking into account the expansion of one of them. A
this aim we shall modify the equation of diffusioh
the drug in tumor. In the end the presence of a
linkage between the controlldi(t) and the drug
concentration in tumor will lead to a nonlineattiei
value problem which we will integrate by Lie series
[5], [7-9].

Let's suppose that after a rapid intravenous
injection in bolus, a slow maintenance by infusién

We plan to develop a computer software in orderthe drug is administered. In order to write the
to find these two fundamental stochastic parameterdalance equations, which describe the behavior of
both in the spontaneous and in the controlled (bythe drug in the host, let us assume what follows:

drugs) evolution.

3 Drug balance equations

V;, (constant) apparent distribution volume of
drug in blood;
V,(t), (variable) tumor volume;
V. » (constant) single cell volume;
Q, , (variable) rate of drug intake;
a,,, (constant) diffusion coefficient of the drug
from blood towards tumor;
a,,(t), (variable) diffusion coefficient of the drug
from tumor towards the blood stream;
a,,, (constant) transfer rate per unit volume from
blood to tumor, such that:
Qy, =Vidy, |
a,,, (constant) transfer rate per unit volume from
tumor to blood, such that:
Ay =V,8,
C,, (variable) drug concentration in blood;
C, ., (variable) drug concentration in tumor;

V4], (constant) drug clearance due to liver
metabolism;

[V lum, (constant) drug clearance due to tumor

metabolism;

[V4lka» (constant) drug clearance due to kidney

depuration;
E(X), (variable) mean of r.v.X, number of
malignant cells.

Now we must add to the above system (9-10)
(equivalent to the forward Kolmogorov's equations

(1) ) the equations of the drug balance in the.Host

our previous paper [1] we discussed the biological
methods which permit the acquirement of all data,
which we assumed known in balance equations

Now we are going to give a biophysical foundation

to the writing of those equations. In doing so we
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1) V,(t) the current volume of the colony, the
apparent distribution volume of drug in blood,
which is supposed to remain constant;

2)the rate of diffusion between the two
compartments (1 blood - 2 tumoral colony) depends
on two different parametersr,, for diffusion from
1 to 2 anda,, in the opposite direction;

3) the drug is removed frod; both by renal

excretion and chiefly by liver metabolic degradatio
Then if

Qi =0 + a4 (t)

g, = primingdose
is the rate intake by continuous intravenous imisi
we can write the following drug balance equations:

dc, ' [}
Vi +01.C = 051Co [V I G + [V JumCr +

+[VgliaCi=Qh s
4Con _ d m dCon _ 1 dm _ m IV,
& AV, @V, vza
ac,n _ dv
V=g =(a.C - a,C, ) -C, & (11)

where,m is the amount of drug moleculés
tumor, C, C,, are drug concentrations in blood

and in a tumor ofX =n cells. Furthermore:
dm

at

is the rate of the exchangeable aliquot of drug
between the two compartments blood stream and
tumoral colony. Besides

[Vcll]met ' [Vcll ]tum ’ [Vcl]kid ’ (13)
are the constant clearances. The first one is due t
metabolism of the drug in liver. The second term
takes into account the metabolic degradation of dru
due to the tumor itself and the last one is due to
renal depuration.
In particular we have assumed that the rate of

(MG —a,V,C, ) = (12)

‘drug presence in colony: i.e. free molecules amd th

ones combined to cellular receptors, with these two

fractions in chemical equilibrium, through the same
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coefficients a,,, a,,, depends from the rates of of drugC, ,, which is supposed in equilibrium with

diffusion from blood to tumor and vice versa. the blood concentration. In fact we can suppose
Note that if V, represents the current colony chemical death depends ¢ q)At, the proportion

volume, whose evolution is perturbed by the drug, i of time in which drug molecules are combined with

may be esteemed as follows: cellular hypothesized receptors:
V, = ( mean of X) x( average cellular volume ) = P{AX(t) =-1, due to chemical death
= E(X) X Vg , IX(t)=r}) = L-q)nAt+o(AL) .

where we assumed, for simplicity, an average
volume of the cells sample/, (even though At the chemical equilibrium the same proportion of

malignancy can be characterized by some variabilitycellular receptors is such that:
in the cellular volume)E(X), mean value of the

random variable, esteems the current number of rate of detachment = rate of attachment

cells in the colony, if the mean well resumes the kynv(@-9) =kC; ,nug =
random variable, i.e. in hypothesis of little vada. _ pGC,,
Now the balance equations of the drug can be so 1-q=——2—, (15)
. 1+pCy,
rewritten: '
where:

vis the constant (in the interval of the
achievement of chemical equilibrium) number of
receptors per cell,

dC.I. = Q_"n — {alz\/lq—aﬂvce“E(x)c‘zn + Vo Tt VG T q + DMaliia Cl)
dt Vv, \ % Vi Vi

dG, =;(31VC1‘32V E(X)C,,—C, V. Mj p::—lis the dissociation constant of chemical
o equilibrium,
C.0)= initial bolus; C,.(0)=0 (14) nv(1-q) receptors attacheaq free receptors,
Vi ' then:
pCs,
Then if we add the above balance equationy (14 h(t)=¢ m : (16)
N

to the previous system (9-10), and if (as we are
going to show in what follow) the controllé(t)
may be expressed b{, ., we achieve a complete

initial value problem describing the controlled

malignant process. By means of this system we Catonj ectur e We assume that the drug control is due
reach the important goal to modulate the drugiy gmal rapidly diffusing molecules able to interfere
concentration in blood and in tumor so that the i, relatively Sow activities of macromolecular
maximum positive effect is obtained, i.e. beingeabl species in cells; since the receptors reproduction

to minimize E(X) after a suitable limited time . the modulation of their concentration in cells

interval in order to restrain the toxicity of dragm are certainly slower processes, then:

noble parenchymal organs. _ _ v, the number of receptors per cell, can be
Then if a daily range may be established ireord . \ciqered constant: furthermore the duration ef th

]EO z?_vmd toiqglty, tgel ttedm_po:_al a_Ldmlnlitratlon chemical linkage of cellular receptors combined
unction must b€ modulated In ime in such a way i, drug molecules in cellular population can be

that the drug amount present in tumor increases.gnsidered esteemed by the proportion, in the
tqwards an optimal \_/alue. This is one of our majorsample, of cells attached to drug, in tr’1e same
aims we pursue in this research. interval At. Attached cells are detected in the
sample, e.g. by a radioactive isotope.
Then it is founded the introduction, in a sagl
4 Dependence of h(t) on drug grug administration, i.e. in mono-therapy with a
concentration drug killing malignant cells, of the new paramater
Kolmogorov equations (9-10), in the above shape
Let us remember here some our assumptions als@L6) and write:
present in our previous note [1] in order to limka
simple model cellular death to tumoral concentratio

It is fundamental to recollect the biological
foundation of our model.
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d

(;in ='Bn—1,7n—l+an,7n +yn+1’7n+1 ; nZl
n@©0)=n,=1;7,0)=0, [Jj #1;
By =n(n-1)A;
a, =nA-nu(t) - n’k; (17
yn+1:_nk;

PC,,

)=p+{—2"—.

ut)y=p Zl+pC2,n

Once these equations are associated to the balancepy - ¢ (¢ ¢ ¢ i+¢ C. & & o,
0(C1, G, 2)6 4(C1, Gy, 61,6)

equations (14) they constitute a nonlinear initial
value problem.

5 Integration by Lie series of the
controlled evolution

The integration by Lie series of the control

Now the "operative” system is reached just rewgitin
the above system with parametric initial conditions
These parameters are the components of the
sequence(c,,C,,& ...)

Once having written, by means of Lie Series, the
components of the solution of the operative system
we obtain the solution to the “original” problem by
fixing the parameters to the initial conditionseLi
Series depends on the Groebner’s operator:

2

- 5 (19)
+Z¢n(C2,£n_l,£n,£n+l)—
n=1 ¢,
and on the Lie operator:
N © tV ~
tD _ v
e® = Z;U D (20)

The former operator is represented by a symbolic

problem is not easy. In previous papers [1, 2, 4-6,series. Its coefficients are the same as in thgnad
10-16] we demonstrated the possibility to integrate system but with parametric arguments.

by Lie generalized series, a differential systemIn general an operator as the first one introduced
obtained by a Taylor Transform of an evolutionary with a symbolic series is an effective differential

differential equation having an analytical operator
the r.h.s.. This condition is indeed sufficient the

operator if the original initial value problem, wehi
it is related to, comes from a Cauchy problem with

existence of the generalized Groebner’'s operatoran analytical evolutionary operatoA™ obtained by

which, in turn, defines the Lie Series. So in oraber

a Taylor Transform in a non singular pointdomA.

obtain the solution of system (17) via generalizedIn fact it has been demonstrated [15] that the
Lie series we can write a symbolic representation o symbolic seriesW’, in a Groebner’s operator such

a slight different problem strictly linked to it v
we name "the original system". At this aim we
perform a Taylor transformation to both sides & th
evolutionary equation with initial poit=1, naming
the new unknown functions

="
n!

and obtaining:

dn, _

= n>0
dt

an(”;—l!”;!”:wl!cz,n) (188-)

as D, defines a linear operator on t8espace of the
Cauchy’'s sequences (normed with tBep-norm)
provided that the coefficients ® form an

infinitesimal sequence. This condition is suffidien
to ensure that the sequence of the partial surtiseof

W series converges in norm 8rspace.

Let's now observe that if the sequence of the
coefficients ofW is infinitesimal, it doesn’t change

if we add a finite number of terms such as the ones

corresponding to the first two addendsDn so D
is effectively a differential operator & In the case
under study the two more addends come from the

to which now we add the drug balance equations ingryg balance equations (18b).

the new unknown functions:

dc, _

o oG, Cy )
(18b)
dCZ n [} [}
q ==®_(C,,1.17,,C,.,)
t
initial bolus
C. (0 :V—; C,,(0)=0
1
m@=n,; 7n;0)=0, 0=#1;
ISBN: 978-960-6766-75-6 168

The second operator (20) is analytic Ih and in
general it exists for every belonging todomA. In
particular if the evolutionary operatér(4) does not
depend explicitly fromt (i.e. it is an autonomous
operator), then the Lie operator (20) exists fagrgv
value oft.

Therefore the components of the solution of the
original problem are:
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—raD

C =[e"¢le,=c, 0).c,=C,,, 00.2,7; (0) 1500
_rAD

C, =[€7Cle,=c, 0).c,=C,,, 00.,27, ©) 15050

1 AD
un _[e gn]clzcl(o),czzczvn(O),sn:r/},(o) 1<n<eo

Consequently

Pz t) =3 (21"
n=1
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Abstract: A mathematical model of a two-prey and one-predator ecosystem with competition for resources among
the prey is analized. Only a segment of conditionally (neutrally) stable equilibrium points are found together
with the interior coexistence equilibrium, which is proven to be inconditionally stable. The latter shows that the
predator population settles to a level which is lower than the one obtained from the original Tansky’s model, the
lower equilibrium value the higher the predators’ mortality. The latter combined also with a large prey carrying
capacity allow the predators’ recovery and the settling of the system toward coexistence.

Key-Words: Predator-prey, switching mechanism, Tansky model, competition, stable equilibria

1 Introduction

In mathematical biology population theory plays a
fundamental role. Historically indeed, the first model
was formulated by the economist Malthus [21], and
later on corrected for logistic, i.e. more realistic, be-
havior by Verhulst [24, 26, 25]. It is well known that
modern biomathematics originated from the works of
\olterra and Lotka at the beginning of the past cen-
tury, [20, 28]. The researches were prompted by the
unexpected results of fish catches in the Adriatic Sea
in the years immediately after World War I, [6]. Since
then the subject has grown and nowadays several in-
ternational Journals are entirely devoted to this topic.

In the original works of \Volterra and Lotka, an
environment is considered in which two populations
interact, and the former, the prey, is the sole food re-
source for the latter. Such an environment is not so
highly unrealistic, as sharks in the ocean feed only on
smaller fish, in the absence of which they certainly
would starve. For terrestrial and avian populations,
the model could be suitably modified to take into ac-
count other food sources. Later developments of the
theory account for food webs, in which several trophic
levels exist and each population is a predator of the
one in the lower trophic level and a source of food for
the one in the upper one. A top predator dominates
the chain, [7, 8]. For recent results on this topic, see
for instance [4, 5, 9, 14, 17, 18], were even chaotic be-
havior and bifurcations can be accounted for in such
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models. From the ecological viewpoint, food chains
may even be related to eutrophycation of marine envi-
ronments, [2, 3, 19].

Further elaborations of the basic model involve
competition for food among species. A current such
example of the former is given by the American grey
squirrel which has been imported and released in the
European environment. The unwanted consequence is
that the former is gradually replacing the autoctonous
species. But to biologists and environmentalists many
other similar examples in which the exotic species al-
ways outperforms the local one are currently known.
Also of interest are systems describing symbiotic in-
teractions or commensalism, in which both popula-
tions benefit from the presence of the other one. Clas-
sical examples are the anemone and the damsel fish,
the bees pollinating the flowers, but for more recent
findings, see [10, 29].

In real ecosystems, where several species are
present, predators in general have the possibility of
feeding on different prey. This situation has also been
analyzed by mathematical models. More refined for-
mulations thus allow for the predators the active se-
lection of the food source. This choice in the classi-
cal Tanksy model [23] is based essentially on the rel-
ative abundance of the two populations. Further work
on this topic has been carried out in the past years,
[11, 12, 13]. Tansky’s model has been recently mod-
ified, [22, 27] to take into account a logistic term. In
the context of trophic systems, such an idea has been
considered for instance in [15]. Here we introduce
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