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Abstract: - This work analyzes the hysteresis PI neural controller for speed control of an indirect rotor flux oriented 
controlled (IRFOC) induction motor drive. This controller generates appropriate stator current distortion in order to 
obtain high performance induction motor speed control. The PI controller provides better dynamic performances than 
the classical PI controller but it has one drawback. The hysteresis PI controller cannot deal with down step speed 
tracking below a certain limit. The artificial neural network generalization capacity is then used to deal with this 
drawback. The simulated input-output non linear relationship of the controller during startup and load disturbance 
rejection is learned off-line using a feed-forward linear network with one hidden layer. 
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1   Introduction 
With the apparition of the indirect rotor field oriented 
control (IRFOC), induction machine drives are 
beginning to become a major candidate in high 
performance motion control applications. In the complex 
machine dynamics, this decoupling technique permits 
independent control of the torque and the flux [1], [6]. 
The indirect rotor field oriented control is a sensitive 
parameter [6]. The heating and the saturation of the 
motor causes detuning in the decoupling operation and 
introduces errors in the torque and field motor output 
values. PID classical controllers find some difficulties in 
dealing with the detuning problem. Artificial neural 
networks (ANN) [2] can be used to design numerical 
controllers in order to maintain high dynamic 
performances even when detuning occurs. 
The PI neural controller provides better dynamic 
performances than the classical PI controller but it has 
one drawback. The hysteresis PI controller cannot deal 
with important down step speed tracking because over 
certain down step reference values, the hysteresis PI 
generates a positive command torque that increases the 
motor speed when we need to decrease it [3]. 
The generalization capacity of the artificial neural 
network is then used to generalize the up step speed 

tracking during start up to the down step speed tracking 
and eliminate this drawback. The simulated input-output 
non linear relationship of this controller during startup 
and load disturbance rejection is learned off-line using 
an appropriate neural network in order to realize the 
robust neural controller. 
 
 
2   Problem Formulation 
The Figure 1 presents the block diagram structure of an 
induction motor speed control using vector reference 
IRFOC scheme. It consists mainly of the squirrel cage 
induction motor, the voltage-regulated pulse width 
modulated inverter, the speed controller and the IRFOC 
block. 
The model of the squirrel-cage induction machine can be 
expressed in the d-q axes using the following equations: 
 

UBXAX +=
.

,                               (1) 
 
where: 
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The electromagnetic torque and the mechanical 
equations can be written as follows: 
 

( )dsqrqsdrme iiiiLpT −=
2
3

,                      (4) 

Ler
r TTf

t
J −=Ω+
Ω
d

d
,                      (5) 

 
where J is the moment of inertia, f – the viscous friction 
coefficient and TL is the load torque. 
 
 
2.1 The voltage reference IRFOC Model 
In the voltage reference IRFOC scheme, Figure, the 
command values of the electromagnetique torque, the 
rotor flux and the stator frequency are delivered to the 
IRFOC block to generate command values of the 
frequency and the reference voltage vector d-q frame 
components. The slip frequency is added to the rotor 
frequency and the results are integrated to evaluate the 
stator angle. The reference voltage vector d-q frame 
components along with the stator angle are delivered to 

the Park inverse transformation block to evaluate the 
reference voltage vector three phase system components. 
These components are delivered to a sine triangle PWM 
to generate pulses to the control the power switches in 
the inverter. 
 
 
2.2 The Hysteresis PI Controller structure 
The speed controller of the IRFOC block diagram from 
the Figure 1 is replaced with the Hysteresis PI controller 
presented in the Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
When the motor starts, the error is positive making the 
hysteresis output equal to: +1. The hysteresis PI controller 
acts then like a classical PI controller by decreasing the 
value of the speed error towards the hysteresis lower 
limit. When crossing this limit, the hysteresis output 
becomes: - 1 and changes the command torque sign. 
This controller can adjust the speed of the motor only at 
starting mode or when load disturbances occur, it cannot 
deal with important down step speed tracking operation 
because, the hysteresis PI generates the positive 
command torque leading to an increase in the motor 
speed when we need to decrease it. 
The output, u(t), from the PI controller is: 
 

[ ] [ ] ττ dKtKtu
t

refirefp ∫ Ω−Ω+Ω−Ω=
0

)()()( ,           (6) 

Kp is the proportional gain, Ki is the integral gain. 
If uk is a sample value of u(t) with sampling period Ts, 
then for a step reference speed an approximation of uk is 
given by the equation: 
 

( ) ⎟
⎠

⎞
⎜
⎝

⎛
Ω−Ω+Ω−Ω= ∑

−

=

1

0

k

i
irefiskrefpk kKTKu ,             (7) 

 
If the reference speed is reached at I = n then for 

nk≥  the hysteresis PI controller maintains the motor 
speed in the vicinity of the reference speed so that: 

refk Ω≈Ω . Therefore the output from the PI controller is 
maintained nearly constant and given by the equation: 
 

Fig. 1. The indirect rotor field orientation control. 

Fig. 2. The Hysteresis PI controller structure. 
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For the new step speed reference Ωref 1 which occurs at 

( ) sTkt 1+= , on can use equation (6) to obtain: 
 

( )refrefiSpk KTKuu Ω−Ω+=+ 11 (* .               (9 
 

2.3 Simulation Results 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Figures 3 and 4 shows the performance comparison 
between the classical PI controller and the hysteresis PI 
controller in speed control of a voltage reference IRFOC 
AC Motor drive. 
The values of PI controller gains used are: 4,0=pK  and  

2,0=iK  and the hysteresis limits are: ± 0,001. For 
simulations on used the sampling frequency of 10 kHz. 
The controller input-output data obtained during 
simulation of the start up and load disturbance rejection 
could be used for the data of the neural network 
controller.  
 
 
3   Problem Solution 
The neural networks can be employed in advanced 
intelligent control applications by making use of 
their non linearity learning, parallel processing and 
generalization capacities [4], [5]. 
The neural network is constituted of densely 
interconnected neurons. A neuron is a computing node. 
It performs the multiplication of its inputs by constant 
weights, sums the results, shifts it by a constant bias and 
maps it to a non linear activation function before 
transferring it to its output. A feed-forward neural 
network is organized in layers of neurons: an input layer, 
one or more hidden layers and an output layer. The 
inputs to each neuron of the input layer are the inputs to 
the network. The inputs to each neuron of the hidden or 
output layer are the outputs from the neurons of the 
preceding layer. 
The mathematical model of a neuron is given by follow: 
 

bxwiy ii
n +==∑ 1 .                      (10 

 
Where y is the output from the neuron, ( )nxxx ,,, 21 K  
are the inputs to the neuron, ( )nwww ,,, 21 K  are the 
corresponding weights, and b is the bias of the neuron. 
The activation function f is generally the logarithmic or 
tangent sigmoid function. For a logarithmic sigmoid 
activation function the output from the neuron is given 
by the equation: 
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In the supervised off-line control, the hysteresis PI 
controller can be replaced by the neural network that 
learns the mapping form of the controller input-output. 
To design a neural network for a supervised off-line 
control, the following steps are necessary: Selection of 
the network structure: The number of layers, the number 

Fig. 4. Comparison performance (command torque) 
between the classical PI controller (a) and the 
hysteresis controller (b). 

Fig. 3. Comparison performance (rotor speed) 
between the classical PI controller (a) and the 
hysteresis controller (b). 
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of neurons for each layer and the number of inputs to the 
network. 
 
 
3.1 Simulation Results 
The Figures 5 and 6 shows the dynamic performance 
comparison between the classical PI controller and the 
neural controller in speed control of a voltage reference 
IRFOC AC Motor drive. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is evident that the neural controller has perfectly 
learned the dynamic performance of the hysteresis 
performance PI. The steady state values of the system 
parameters are almost the same as obtained using the 
hysteresis PI. The only difference is the switching 

time sequence of the command torque which results in 
a slightly better speed control. 
The neural controller is a three layers feed-forward 
linear network with two neurons in the input and 
hidden layer and one neuron in the output layer. The 
speed error is the only input to the controller. 
 
 
4   Conclusion 
The hysteresis PI speed controller for voltage reference 
IRFOC induction motor drive control generates 
appropriate stator current distortion in order to obtain 
high performance induction motor speed control. 
The dynamic performance comparison with the classical 
PI controller showed that a simple hysteresis has 
changed the classical PI controller to a high performance 
controller. The only drawback is that the hysteresis PI 
controller cannot deal with important down step speed 
tracking. 
The input output relationship of this controller is used to 
design an artificial neural network based controller 
whose generalization capacity got rid of the down step 
tracking problem. 
The Simulation results show that the neural controller 
realizes the good dynamic behavior of the motor, with 
the rapid settling time, no overshoot, almost 
instantaneous rejection of load disturbance, the perfect 
speed tracking and it deals well with parameter 
variations of the motor. It seems to be a high- 
performance robust controller. 
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Fig. 6. Dynamic performance comparison (Rotor 
speed) between the classical PI controller (a) and the 
neural controller (b). 

Fig. 5. Dynamic performance comparison (Stator 
current) between the classical PI controller (a) and the 
neural controller (b). 
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