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Abstract: -. The paper is focused on the solitons and nonlinear equations for an uniaxial deformation problem. 
The aim is to determine a parametrical representation for a class of constitutive laws for  nonhomogeneous 
media for which the motion equations attached to a material system, is associated to a pseudospherical surface 
(with negative Gaussian curvature ).  A subclass of these constitutive laws can be associated to a Tzitzeica 
surface, for which the ratio  (  is the distance from the origin to the tangent plane at an arbitrary point), 
is constant. A genetic algorithm is performed to study three inverse problems associated to some experimental 
results. 
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1 Introduction 
The discovery of the physical soliton is attributed to 
John Scott Russell. In 1834, Russell was observing a 
boat being drawn along a narrow channel by a pair 
of horses. He followed it on horseback and observed 
an amazing phenomenon: when the boat suddenly 
stopped, a bow wave detached from the boat and 
rolled forward with great velocity, having the shape 
of a large solitary elevation, with a rounded well-
defined heap of water. The solitary wave continued 
its motion along the channel without change of form 
or velocity [1]. The wave of translation was 
regarded as a curiosity until the 1960s, when 
scientists began to use computers to study nonlinear 
wave propagation. The discovery of mathematical 
solutions started with the analysis of nonlinear 
partial differential equations, such as the work of 
Boussinesq and Rayleigh, independently, in the 
1870s. Boussinesq and Rayleigh explained 
theoretically the Russell observation and later 
reproduction in a laboratory experiment. Korteweg 
and de Vries derived in 1895 the equation for water 
waves in shallow channels, and confirmed the 
existence of solitons [2].  
     The study of affine differential geometry was 
initiated by Gheorghe Tzitzeica (1873–1939) in 
1907 by studying a particular class of hyperbolic 

surfaces. Tzitzeica proved that the surfaces for 
which the ratio ( is the Gaussian curvature 
and , the distance from the origin to the tangent 
plane at an arbitrary point) is constant, are invariants 
under the group of centroaffine transformations. The 
Tzitzeica property proves to be invariant under 
affine transformations, and his surfaces are called 
Tzitzeica surfaces by Gheorghiu, or affine spheres 
by Blaschke [3], [4].  

4/K d K
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     A privileged surface related to the certain 
nonlinear equations that admit solitonic solutions, is 
the Tzitzeica surface (1910). Developments in the 
geometry of such surface gave a gradual 
clarification of predictable properties in natural 
phenomena [5]-[7]. 
 
2 Pseudospherical reduction of the 

problem 
Consider the 1D problem of uniaxial deformation of 
a nonhomogeneous rod. We present in this section 
the pseudospherical reduction of the problem in the 
spirit of [8], [9]. The governing equations in a 
Lagrangian system of coordinates ( , )X t are written 
as 

t Xvε = ,  0 tv Xρ = σ .                         (1) 
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     The constitutive law is given by  

( , )Xσ = σ ε ,                               (2) 

where  and  are the uniaxial stress and 

respectively, the density of the material, 

σ ρ

0 1ρ
ε = −

ρ
 

is the stretch,  is the density of the material in the 
underformed state, and  is the material 
velocity. In terms of the Eulerian coordinates 

0ρ
( , )v X t

( , )x x X t= , we have d ( 1)d dx X v t= ε + = ,  so that 

0d d dX x vρ = ρ − ρ t .                          (3) 

     In (3, X  corresponds to the particle function ψ  
of the Martin formulation. The independent 
variables are chosen to be  and ψ , and we 
suppose . In this case we obtain the Monge–
Ampère equation  

σ

0 1ρ =

2
σσ ψψ σψ σξ ξ − ξ = ε ,                       (4)                

where , , t σ= ξ v ψ= ξ d ( )dx ψ σσ ψ σψ= ξ ξ + ξ ξ + ε ψ .      
If a solution  of this equation is specified, 
then the particle trajectories are calculated from 

( , )ξ σ ψ

[ ( )d ]x ψ σσ ψ σψ= ξ ξ + ξ ξ + ε ψ∫ p= ξ, t ,             (5) 

in terms of σ , for   By solving (5) the 
solution  is obtained, and the original 
solution of (1), (2) is parametrically determined in 
terms of the Lagrangian variables 

const.ψ =
( , )tσ ψ

( , )x x t= ψ , 
, . To made the geometric 

connection to this problem, let us consider a surface 
 in  written the Monge parametrisation  

( , )v v t= ψ ( , )tσ = σ ψ

Σ 3R

1 2 ( , )r xe ye z x y e= + + 3

2 2

,               (6) 

where  the position vector of a point  
on the surface. The first and second fundamental 
forms are defined as 

( , , )r r x y z= P

2 2

2 2

d 2 d d d (1 )d

2 d d (1 )d ,
x

x y y

I E x F x y G y z x

z z x y z y

= + + = +

+ + +
 

2 2

2

2 2

d 2 d d d
1 ( d 2 d d d )

1
xx xy yy

x y

II e x f x y g y

z x z x y z y
z z

= + +

= +
+ +

2 .+     (7) 

     The Gaussian  curvature of  is Σ
22

2 2(1 )2 2
xx yy xy

x y

z z zeg f
EG F z z

−−
Κ = = −

− + +
. 

     If Σ  is a hyperbolic surface, then total curvature 
is negative and the asymptotic lines on Σ  may be 
taken as parametric curves.  
     By introducing the same independent variables as 
before, σ  and ψ , xzσ = , ,  and the 
dependent variable 

yzψ =

ξ , xσξ = , ,  we have yψξ =

2
yy

xx yy xy

z
z z zσσξ =

−
, 2

xx

xx yy xy

z
z z zψψξ =

−
,  

2
xy

xx yy xy

z
z z zσψξ =

−
. 

     The Gaussian curvature (7) yields 

2 2 2 2

1
(1 ) ( )

K
σσ ψψ σψ

=
+ σ + ψ ξ ξ − ξ

. 

     The Gaussian curvature may be set into 
correspondence with the Martin’s Monge–Ampère 

equation (4) by 2 2

1
(1 )σε =

Κ + σ +ψ 2 , and 

2

2 2(1 )
A

X
Κ =

+ σ + 2 ,                    (8) 

where 2

|X
A ∂σ

=
∂ε

, with  the Lagrangian wave 

velocity. The surface  is restricted to be 

pseudospherical, that is  

A

Σ

2

1K
a

= − ,       const.a =

     In this case the relation (8) gives 
2

2 2
2 2

2 (1 ) | 0
| X
X

X
a

∂ σ ∂σ
= + σ + σ >

∂ε ∂ε
,  .        (9) 0σ >

     By integrating (9) we have 
2

2 3/ 2 ( )
2(1 )

a F X
X

ε = + α
+

, 

2

2 2

1arctan
1 1

XF 2X X

⎡ ⎤σ σ +⎛ ⎞= +⎢ ⎥⎜ ⎟+ + σ +⎝ ⎠⎢ ⎥⎣ ⎦
,     (10) 

with ( )Xα arbitrary.  For , it results 0|ε=σ = 0
( )Xα =0. The relation (10) represents a class of 

constitutive laws for which (1) are associated to a 
pseudospherical surface Σ . 
Starting from (10) we can obtain several constitutive 
laws for specified practical problems. 
In particular, let us introduce into (9) the stress 
representation 

21 tanX Aσ = + ,  
2

0
1 (XA c

a

⎡ ⎤+
= ⎢ ⎥
⎢ ⎥⎣ ⎦

)c− .     (11) 

In this case we obtain 
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2
0

2 2

1 sin(2 )
2(1 ) 1

c ca A
X a X

⎡ ⎤−
ε = +⎢ ⎥+ +⎣ ⎦

.        (12)  

Thus, relations (11) and (12) represent a parametric 
representation for the constitutive laws ( , )Xσ = σ ε , 
for which the equations (1) are associated to a 
pseudospherical surface Σ . These equations lead to 

. We have XX ttσ = ε

2

2 2 2(1 )XX
t

a
X

⎡ ⎤
σ = σ⎢ + σ +⎣ ⎦

t ⎥ .                    (13) 

     The equation (13) has a solitonic behavior and 
admits soliton solutions. These solutions known as 
solitons have the form of localized functions that 
conserve their properties even after interaction 
among them, and then act somewhat like particles.  
 
3  Tzitzeica surfaces 
Let  be an open set and consider a surface 2RD⊂ Σ  
in  defined by the position vector  3R ( , )r u v

( , ) ( , ) ( , ) ( , )r u v x u v i y u v j z u v k= + +
( , )u v D∈ . 

     The vector , which satisfies the condition  ( , )r u v

( , , ) 0u vr r r ≠ ,                                  (14) 

is the solution of the second-order partial differential 
equations system that defines a surface   

uu u vr ar br cr= + + uv u vr a r b r c r′ ′ ′, = + + ,  
, vv u vr a r b r c r′′ ′′ ′′= + +

which is completely integrable, that is 

( ) ( )uu v uv ur r= ,  ,               (15) ( ) ( )uv v vv ur r=

where are the centroaffine invariant 
functions  of  and . For 

, , ...a a a′ ′′

u v 0c c′′= = , the surface Σ  
is related to the asymptotic lines. If Σ  is a surface 

related to the asymptotic lines.  The ration 4

KI
d

=  is 

a constant if and only if 0a b′ ′= = . Therefore, the 
Tzitzeica surfaces are defined by the system of 
equations 

uu u vr ar br= + , ,  ,      (16) uvr h= r

h

vv u vr a r b r′′ ′′= +

where .  The integrability conditions (15) 
become  

c h′ =

uah h= , , , va ba h′′= + 0vb bb′′+ =

vb h h′′ = , , .          (17) 0a aa′′ ′′+ = ub a b h′′ ′′+ =

     If  satisfies the Liouville–Tzitzeica equation h
(ln )uvh = , the Tzitzeica surfaces which are not 
ruled surfaces are defined by  

( )u
uu u v

h ur r r
h h

ϕ
= + uvr h=, , r v

vv v
hr r
h

= .      (18) 

If  satisfies the Tzitzeica equation h

2

1(ln )uvh h
h

= − , the Tzitzeica surfaces which are 

not ruled surfaces are defined by 

 1u
uu u v

hr r r
h h

= + uv hr,  r = ,   1 v
vv u v

hr r
h h

= + r .   (19)                   

     The system (3) can be written in the form 

 uu u va bθ = θ + θ ,  uv hθ = θ , ,  (20)         vv u va b′′ ′′θ = θ + θ

 with the condition that the three independent 
solutions ( , )x x u v= , ,  of 
(20) and (17) define a Tzitzeica surface. An 
equivalent form of  (16) is given  

( , )y y u v= ( , )z z u v=

uu u vx ax bx= + , uvx hx= , vv u vx a x b x′′ ′′= + , 

uu u vy ay by= + , uvy hy= , , vv u vy a y b y′′ ′′= +

uu u vz az bz= + , uvz hz= , , vv u vz a z b z′′ ′′= +

with the conditions (14) and (17). This form is 
useful for studying the symmetries of the system  
(16).  
     If Σ  is a ruled Tzitzeica surface given by (18), 
the completely integrable conditions  (17) turn in 

uha
h

= , 
( )ub
h

ϕ
= , , 0a′′ = vhb

h
′′ = ,        (21)  

with  a solution of the Liouville–Tzitzeica 
equation 

h
(ln )uvh h= .  

( ) 0 3 k
ζ =

ϕu v u vh h hζ + η + ζ + η = , , 

 .                         (22) 3
uv u vhh h h h−

Writing 1
U

ζ =
′
, 1

V
η = −

′
, where  and ( )U U u=

( )V V v= , then the first equation of (22) is 

(h U V U V )′ ′= µ + .                 (23) 

Substituting (23) in the last equation (22) we have 
the equation 

2′′ ′ 3µµ −µ = µ .                    (24) 

The general solution of (24) is 
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2

2
2

2

2
2

2

2 , 0,
( )

( ) , ,
2cos [0.5 ( ) ]

, ,
2sinh [0.5 ( ) ]

k
U V C

lU V k l
l U V C

l k l l
l U V C

⎧
=⎪ + +⎪

⎪⎪µ + = = −⎨ + +⎪
⎪
⎪ = 0.

+ +⎪⎩
>

      

(25) 
From (23) and the change of the functions 

, , we have  ( )U F U=% ( )V G V=%

U U C= +% , V , for , V=% 0k =

tanh ( )
2
lU U C= +% , tanh

2
l

=%V V , for 2k l= , 

cotan ( )
2
lU U C= +% , tan

2
l

=%V V , for . (26) 2k l= −

     Therefore, the general solution of the Liouville–
Tzitzeica equation is 

2

2( , )
( )

U Vh u v
U V

′ ′
=

+

% %

% %
.                         (27) 

     This solution is expressed in terms of solitons for 
, and 2k l= −

2sech ( )
2 2
l lU U C′ = +% ,  2sech

2 2
l l V′ =%

8−

4

V . 

 
4  The constitutive laws. Results 
Materials we are going to model are Berea 
sandstone, Kayenta sandstone [10] and 
discontinuous random Polyethylene fiber reinforced 
cement [11]. For these materials and also, for 
metals, sintered ceramic and cracked solids, the 
scientists have discovered essential effects given by 
nonlinearities such as the slow dynamics, a creep-
like behavior induced by mechanical excitation at 
small amplitudes (strains ). Slow 
dynamics is manifests by a significant and persistent 
alteration in the material dissipation and modulus 
after mechanical disturbance, a memory of the 
disturbed strain state. The modulus and wave 
dissipation progressively recover to their original 
values as log (time) after  seconds. Slow 
dynamics is destined to become a sensitive probe of 
the micromechanics of the system [12]-[14].These 
materials (fig.1) are aggregate of grains which act as 
rigid vibrating units, while the contacts between 
them – the bond system – constitute a set of 
interfaces that control the behaviour of the material. 
The interfaces are mesoscopic, with a typical size of 
1  [15]. 

510 10− −

310 10−

µm

     This class of materials includes pearlitic steel, 
fiber-reinforced metal matrix composites, cement, 
concrete, ceramics, rocks, sand, soil etc. . 

Fig.1. Schematic picture of a granular 
material. 

     In this paper, we consider three materials 
subjected to a standard loading path in the 
conventional triaxial configuration:1. Berea 
sandstone [10], Kayenta sandstone [10], and 
discontinuous random Polyethylene fiber reinforced 
cement [11]. We assume that the unknown three 
parameters 0{ , , }p a c c=  are discretised into discrete 
values with the step width . The set of 
parameters for an arbitrary problem are 

0, ,a c c∆ ∆ ∆

, , 0,{ , , }i j kp a c c=  is expressed as the combination 
number ( 1) ( 1)ijM i JK j K k= − + − + , where 

 are total number of discretised values for 
each parameter 

, ,I J K
p [16].  This number is counted 

from the first set of parameter ,1 ,1 0,1{ , , }p a c c= .We 
consider a square sum of differences between the 
measured stress-strain results for some selected 
cases of uniaxial tension problem for non-

homogeneous materials 2

1
(

M
m m
i i

m

)
=

= σ −σ∑W ,  where 

m
iσ  denotes the measured stress at point  on the 

strain-stress diagram
m

σ−ε , and  denotes the 
computed strain-stress  

m
iσ

σ−ε  at the same poin t . m
M  is the number of points from the measured 
uniaxial diagramσ− ε . We define fitness F%  as a 

reciprocal number of the function 0WF
W

=%  where  

2
0

1

( )
M

m
i

m

W
=

= σ∑ . The convergence criterion is given 

by the non-dimensional expression 10
0

1 log
2

WZ
W

= . 

For all considered examples, the number of 
populations is 25, ratio of reproduction 1, number of 
multi-point crossovers 1, probability of mutation 
0.25 and the maximum number of generations 300. 
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     The constitutive law for Berea sandstone is 
illustrated by our theory in fig.2. For , the  
stress marks a peak representing the failure. An 
increase  shifts the macroscopic failure mode 
from brittle to ductile. At the strain 
hardening persists up. This behavior is qualitatively 
the same to the experimental results reported in [10]. 
The failure means to be a function of , for 
specified  and . The inelastic 
behavior is macroscopically ductile, and the 
conventional approach is to pick its failure strength 
to be the stress level at an arbitrary axial strain. The 
strength so determined is compiled as a function , 
for specified c  and . In [10] the effective pressure 
plays the same role as the parameter.  

0.2a =

0.5a =
1.7a =

a
2.3c = 0 1.4c =

a
0c

 
Fig. 2. The stress-strain law for Berea 

sandstone 

 
Fig. 3.The stress-strain law for Kayenta 

sandstone. 

     The constitutive law for Kayenta sandstone is 
illustrated in fig. 3. For , the stress marks a 
failure peak. For  and , the 
macroscopic failure mode is changed from brittle to 
ductile. At the strain hardening is observed. 
This behavior is qualitatively the same to the 
experimental results reported in [10]. Also, the 

failure means to be a function of the parameter , 
for specified 

0.3a =
0.7a = 1.1a =

1.4a =

a
1.9c =  and .  0 0.9c =

     The constitutive law for discontinuous random 
polyethylene fiber reinforced cement is illustrated in 
fig. 4, for two values for the fiber volume fraction 
(0.1 % and 1%).  

 
Fig. 4. The stress-strain law for 

polyethylene fiber reinforced cement. 

 
Fig. 5. The stress-strain law for Berea 

sandstone. 

     As shown in the figure, the composite with 0.1 % 
fiber volume fraction ( ) have a catastrophic 
failure. For 1% fiber volume fraction (

3c =
3.5c = ) the 

figure shows a significant ductility and accentuated 
fracture toughness. The others parameters are 

0.7a =  and 0 0.2c = . The results reveal the 
importance of the parameter c  in describing the 
stress-strain curve for fiber reinforced composites. 
We can say that this parameter is proportional to the 
fiber volume fraction for specified  and . An 
interesting case of a constitutive law, associated to a 
Tzitzeica surface (  is constant), is considered 
for the same data, as in the previous case, for Berea 
sandstone. We obtain the diagrams illustrated in 

a 0c

4/K d
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fig.5, that show a significant ductility and fracture 
toughness. 
 
 
5      Conclusions 
The goal of the paper is to determine a parametrical 
representation for a class of constitutive laws for 
which the motion equations attached to a material 
system is associated to a pseudospherical surface. 
The uniaxial deformation problem for non-
homogeneous materials is discussed via the 
pseudospherical reduction technique. 
     A genetic algorithm is performed to study four 
inverse problems associated to experimental results. 
For Berea sandstone and Kayenta sandstone, the 
strength of material can be determined as a function 

, for specified c  and . The relation of  to the 

Gaussian curvature is 

a 0c a

2

1K
a

= − . So, we can 

conclude that if the motion equations can be 
associated to a pseudospherical surface Σ , of 
Gaussian curvature , the strength of material can 
be described as a function of . 

K
K

     For discontinuous random polyethylene fiber 
reinforced cement, the results yields to the 
conclusion that the parameter  is important in 
describing the stress-strain curve for fiber reinforced 
composites. We can conclude that this parameter 
may be proportional to the fiber volume fraction for 
specified  and . 

c

a 0c
     A subclass of the constitutive laws is associated 
to a Tzitzeica surface, for which the ratio 4/K d  ( d  
is the distance from the origin to the tangent plane at 
an arbitrary point), is constant. For Berea sandstone, 
the parameter  is related to , and it is important 
in describing the ductility and fracture toughness 
properties. 

a d
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