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Abstract: A fault-tolerant classification system in wireless sensor networks combining distributed detection with
error-correcting codes have recently been proposed. A codeword is designed for each hypothesis. Each sensor
makes a local decision based on the codeword and its observation result. The local decision is then transmitted
to a fusion center to make a final decision. An adaptive redetection algorithm and an adaptive retransmission
scheme were later developed to reduce the misclassification probability of the system when the observation is
highly noisy, and the transmission channel between the sensor and the fusion center is deeply faded, respectively.
The observation result at the sensor and the received data at the fusion center are discarded if they are not reliable
in the adaptive method. However, they still have useful information about the hypothesis and should be utilized.
This work use Linear Combination (LC) techniques to utilize the unreliable data. Little extra complexity is needed.
Simulation results show that the new adaptive method with LC outperforms the original one.

Key–Words: Equal-gain combination, wireless sensor networks, adaptive distributed detection, fading channels,
fault-tolerant

1 Introduction

Wireless sensor networks (WSNs) comprise many
tiny, low-cost, battery-powered sensors in a small
area [1]. The sensors observe environmental varia-
tions and then transmit the observation results to other
sensors or a base station [2]. The base station or a
sensor, serving as a fusion center, collects all observa-
tion results, and determines what phenomenon has oc-
curred. The collection is realized using wireless com-
munication technology, and a wireless network is built
for multiple accesses. To lower the transmission bur-
den, the observation result is typically denoted by a
local decision which is made by the sensor, and which
requires fewer bits than the observation result. The lo-
cal decision is transmitted rather than the observation
result. Hence, each sensor must be able to collect,
process and communicate data.

The WSN sometimes must be able to function un-
der severe conditions, such as in a battlefield, fire-
place or polluted area. The transmission channel, as
well as the environmental phenomenon observed by
the sensor, is noisy. Furthermore, the observation sig-
nal to noise ratio (OSNR) and the channel signal to
noise ratio (CSNR) may change quickly. The OS-
NRs and the CSNRs are thus impossible to estimate
accurately. Some sensors may even have unrecog-

nized faults. The traditional distributed classification
method thus fails due to inaccurate estimates or faulty
sensors. Therefore, a fault-tolerant system must be
developed to make the received local decisions error-
resistant [3].

Wang et al. [4] proposed Distributed Classifica-
tion Fusion using Error-Correcting Codes (DCFECC)
to solve this problem by combining the distributed
detection theory with the concept of error-correcting
codes in communication systems. One sample is de-
tected in each of N sensors for a given phenomenon.
A codeword consisting of N symbols is designed for
each phenomenon. In other words, a one-dimensional
code (1 × N ) corresponds to a phenomenon. Thus,
M phenomena form an M × N code matrix. Each
symbol with one bit is assigned to each sensor and
each sensor has its local decision rules. A local deci-
sion based on the rule is made from the observation
result and is represented with the assigned symbol.
DCFECC has a much lower probability of misclas-
sification when some sensors are faulty than the tra-
ditional distributed classification method. DCFECC
outperforms the method even when CSNR is not cor-
rectly estimated.

DCSD (distributed classification fusion using
soft-decision decoding) [5] was later developed by
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improving DCFECC. The soft-decision decoding, in-
stead of hard-decision decoding, is utilized to increase
decoding accuracy. However, the misclassification
probability remains high in the extreme case, i.e., very
low SNRs (including OSNRs and CSNRs) because of
large observation deviation and unreliable transmis-
sion channels. Pai et al. have developed an adaptive
retransmission mechanism to resolve the low CSNR
problem [6,7] and then proposed an adaptive redetec-
tion algorithm to combat the low OSNR problem [8].

In the adaptive retransmission mechanism, the fu-
sion center calculates the channel reliability of each
received detection result while making the final deci-
sion. When the final decision is not reliable, the re-
ceived result with the lowest channel reliability is dis-
carded and the sensor which has sent it will be asked
to retransmit its detection result by the fusion cen-
ter. Similarly, if the observation result of the sensor
is located in a unreliable range, it is discarded and the
sensor makes another observation in the adaptive re-
detection mechanism. However, the unreliable obser-
vation result at the sensor and the unreliable received
detection result at the fusion center still contain infor-
mation about the environment and the local decision,
respectively. They should be utilized to increase the
performance of the adaptive distributed classification
system.

In this work, we apply Linear Combination (LC)
techniques [9] for the utilization of the unreliable data.
A new observation result at a sensor is equally com-
bined with the combined result of the previous obser-
vations. The combined observation result is then em-
ployed to decide whether another observation is nec-
essary or not. If another observation is unnecessary,
a local decision based on the combination result is
made. The adaptive redetection scheme using the LC
technique needs a smaller number of observations and
has a lower misclassification probability than the orig-
inal one. Similarly, the channel reliability of the latest
received local decision from the same sensor at the
fusion center is equally combined with the combined
channel reliability of the previous received local deci-
sions. The fusion center then use the combined chan-
nel reliability to decide which sensor is selected for
retransmission. Moreover, two methods are proposed
to decide if the final decision can be made. The new
adaptive retransmission algorithms needs less retrans-
mission times and reach a misclassification probabil-
ity close to the previous one under the same retrans-
mission criteria.

Figure 1: Structure of a wireless sensor network for
distributed detection using N sensors

Table 1: The 4 × 10 optimal code matrix [11]

H1 1 1 1 1 1 0 0 0 0 0

H2 1 1 1 1 1 1 1 1 1 1

H3 0 0 0 0 0 1 1 1 1 1

H4 0 0 0 0 0 0 0 0 0 0

2 Distributed Detection and The Pre-
vious Works

Figure 1 depicts a wireless sensor network for dis-
tributed detection with N sensors deployed for col-
lecting environment variation data and a fusion center
for making a final decision of detections. This net-
work architecture is similar to the so-called SEnsor
with Mobile Access (SENMA) [10]. At the j-th sen-
sor, one observation yj is undertaken for one of phe-
nomena Hi, where i = 1, 2, . . . ,M . The observa-
tion is normally a real number represented by many
bits. Transmitting the real number to the fusion center
would consume too much power, so a local decision,
uj , is made instead.

2.1 Old Adaptive Redetection Algorithm
The DCFECC approach [4] designs an M × N code
matrix T not only to correct transmission errors, but
also to resist faulty sensors. The application of the
code matrix is derived from error-correcting codes.
Table 1 lists an example of T, which is the optimal
code matrix found in [11]. Row i of the matrix rep-
resents a codeword ci = (ci,1, ci,2, . . . , ci,N ) corre-
sponding to hypothesis Hi, and ci,j denotes a 1-bit
symbol corresponding to the decision of sensor j.

The decision region at sensor j can be represented
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Figure 2: The threshold and the unreliable range at
σ = 0.6 for sensor 1

by a set of thresholds [8]. Thus, a local decision rule
associated with this threshold set can be performed
to determine uj when yj is observed. Since the ob-
servation result around the threshold is not reliable,
an unreliable range is defined around the threshold.
For example, four hypotheses H1,H2,H3, and H4,
are detected and classified with N = 10 sensors
and a fusion center. These hypotheses are assumed
to have Gaussian-distributed probability density func-
tions (pdfs) with the same standard deviation σ2 and
means 0, 1, 2, and 3, respectively. Table 1 is used as
the code matrix. At each sensor, OSNR is defined as
−10 × log10 σ2. When σ2 = 0.6 and channel noise
is zero, the threshold, T1, and the unreliable range,
U1 = [T1 − τ1 T1 + τ1] of sensor 1 is illustrated in
Fig. 2. If the observation result falls in the unreliable
range, it is discarded and another observation is taken.
The whole process does not stop until the latest obser-
vation is not located in the unreliable range. The adap-
tive redetection scheme outperforms the non-adaptive
algorithm by 2 dB.

2.2 Old Adaptive Retransmission Algorithm
DCSD approach utilizes soft decoding to improve
the reliability of the final decisions [5]. Set u =
(u1, u2, . . . , uN ). The local decision u is transmitted
for the final decision to the fusion center. When binary
antipodal modulation is deployed, the received data at
the fusion center are ṽ = (ṽ1, ṽ2, . . . , ṽN ), where

ṽj = αj (−1)uj

√
Es

L
+ nj. (1)

Notice that αj is the attenuation factor, Es is the to-
tal transmission energy per sensor, and nj is the addi-
tive white Gaussian noise (AWGN) with the two-sided

power spectral density N0/2. The received data are
decoded as hypothesis i if

p (ṽ|ci) ≥ p (ṽ|ck) for all ck, where k = 1, . . . ,M.
(2)

Because ci,j and ck,j are binary, the bit logarithm-
likelihood ratio of the received data at the fusion cen-
ter can be defined as

λj = ln

1∑
bu=0

p (ṽj |uj = bu) p (uj = bu|ci,j = 0)

1∑
bu=0

p (ṽj|uj = bu) p (uj = bu|ck,j = 1)
.

Equation (2) is then equivalent to

N∑
j=1

[λj − (−1)ci,j ]2 ≤
N∑

j=1

[λj − (−1)ck,j ]2 .

Denote δi =
N∑

j=1
[λj − (−1)ci,j ]2 . The fusion

center decodes the received data as hypothesis imin if
imin = arg mini δi. Define isec = arg mini,i�=imin

δi.
A smaller difference δ = δisec − δimin indicates that
the received data are around the decision boundary,
meaning that the decoding result has a higher error
probability. Thus, retransmission of the local decision
is necessary.

Define the channel reliability of the received local
decision j as

γj =
∣∣∣∣ln p (ṽj|uj = 0)

p (ṽj|uj = 1)

∣∣∣∣ .
Because the retransmission should help the fusion
center to differentiate cimin from cisec , only the sen-
sor, j′, with different symbols corresponding to these
two codewords should be chosen, i.e., cimin,j′ �=
cisec,j′. Therefore, the fusion center discards the re-
ceived local decision from sensor jmin, where jmin =
arg minj′ γj′ , and ask it to retransmit its local deci-
sion. The retransmission process does not stop until δ
is greater than a predefined threshold.

3 New Adaptive Scheme Using EGC

3.1 New Adaptive Redetection
Assume that all observations of a sensor are identi-
cally independent distributed (i.i.d.) given Hi and
have the same OSNR. According to [9], Equal-Gain
Combination (EGC) is the optimal method to comb-
ing two observations. Denote yd

j , d = 1, 2, . . . , as the
d-th observation of sensor j and

ȳd
j =

{
y1

j if d = 1
1
2 (yd

j + ȳd−1
j ) else
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as the combined observation result of sensor j in d
observations. We propose an adaptive redetection al-
gorithm for each sensor using the concept of EGC as
follows:

Step 1: Define the allowed maximum number of ob-
servations as D and set the number of observa-
tions, d, to 0.

Step 2: The sensor makes an observation of the en-
vironment and sets d = d + 1.

Step 3: If the combined observation result in d ob-
servations, i.e., ȳd

j falls in the unreliable range
and d ≤ D, go to Step 2. Otherwise, the sensor
makes a local decision according to ȳd

j .

Step 4: The sensor transmits the local decision to
the fusion center.

Notably, all observations at each sensor may not
be combine with equal weights. On the other hand, the
new observation is equally combined with the com-
bined result of previous observations. This adaptive
mechanism is different from the original application
of EGC, where all observations are equally combined,
no adaptive mechanism is employed, and the number
of observations is fixed. Furthermore, only the com-
bined observation result must be saved at the sensor
and an average operation for two values is conducted.
Therefore, little extra cost over the old adaptive rede-
tection in Section 2.1 is needed.

We further assume that all hypotheses, Hi, are
equally likely to occur. Let Uj be the unreliable range
for senor j. The probability that the (d + 1)-th obser-
vation, d = 1, 2, . . . ,D − 1, is necessary for sensor j
after d observations can be represented by

P r
j (d) = Pr{ȳ1

j ∈ Uj , ȳ
2
j ∈ Uj , . . . , ȳ

d
j ∈ Uj}.

Therefore, the expected number of observations for
sensor j can be calculated by

Oj = 1 × (1 − P r
j (1)) +

2 × P r
j (1)(1 − P r

j (2)) + · · · +

D ×
D−1∏
d=1

P r
j (d).

Define Cij and Wij as the range which sensor j
will make a correct and wrong local decision given
Hi, respectively, if ȳd

j is located in. Notably, both Cij

and Wij are reliable ranges. The probabilities that the
local decision of sensor j is correct and wrong after
d < D observations can be computed by

P c
j (d) =

1
M

M∑
i=1

Pr{ȳ1
j ∈ Uj, . . . , ȳ

d
j ∈ Cij|Hi}

and

P e
j (d) =

1
M

M∑
i=1

Pr{ȳ1
j ∈ Uj, . . . , ȳ

d
j ∈ Wij|Hi},

respectively. When d = D, no unreliable ranges are
effective since the sensor must make a decision. Let
C ′

ij and W ′
ij be the range which sensor j will make

a correct and wrong local decision given Hi, respec-
tively, when no reliable ranges are defined. The prob-
abilities that the local decision of sensor j is correct
and wrong after D observations can be computed by

P c
j (D) =

1
M

M∑
i=1

Pr{ȳ1
j ∈ Uj, . . . , ȳ

d
j ∈ C ′

ij|Hi}

and

P e
j (D) =

1
M

M∑
i=1

Pr{ȳ1
j ∈ Uj, . . . , ȳ

d
j ∈ W ′

ij|Hi},

Consequently, the probabilities that the the local de-
cision of sensor j is correct and wrong can be found
by

P c
j = P c

j (1) + P r
j (1)P c

j (2) + · · · +
D−1∏
d=1

P r
j (d)P c

j (D)

and

P e
j = P e

j (1) + P r
j (1)P e

j (2) + · · · +
D−1∏
d=1

P r
j (d)P e

j (D).

In the example of Section 2.1, the ranges, C11

and C′
11, that sensor 1 will make a correct local de-

cision given H1 are [−∞ T1 − τ1) and [−∞ T1), re-
spectively. On the other hand, the ranges, W11 and
W ′

11, that sensor 1 will make a wrong local decision
given H1 are [T1 + τ1 ∞] and [T1 ∞], respectively.
Similarly, Cij , C ′

ij , Wij and W ′
ij for all i and j can

be defined/found. Therefore, Oj , P c
j , and P e

j can
be calculated numerically according the pdfs of Hi,
i = 1, 2, 3, 4.

3.2 New Adaptive Retransmission
Denote ṽ

rj

j , rj = 1, 2, . . . , as the rj-th received local
decision from sensor j at the fusion center and

λ̄
rj

j =

ln

1∑
bu=0

p
(
ṽ1
j , . . . , ṽ

rj

j |uj = bu

)
p (uj = bu|ci,j = 0)

1∑
bu=0

p
(
ṽ1
j , . . . , ṽ

rj

j |uj = bu

)
p (uj = bu|ck,j = 1)
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as the combined bit logarithm likelihood ratio of the
received local decision j at the fusion center. Assume
that all received local decisions from sensor j at the
fusion center are i.i.d. given its local decision, uj .
That is,

p
(
ṽ1
j , . . . , ṽ

rj

j |uj

)
= p

(
ṽ1
j |uj

) · · · p (
ṽ

rj

j |uj

)
. (3)

The combined bit logarithm likelihood ratio can be
rewritten as

λ̄
rj

j =

ln

1∑
bu=0

∏rj

k=1 p
(
ṽk
j |uj = bu

)
p (uj = bu|ci,j = 0)

1∑
bu=0

∏rj

k=1 p
(
ṽk
j |uj = bu

)
p (uj = bu|ck,j = 1)

.

Moreover, let

δ̄i =
N∑

j=1

[
λ̄

rj

j − (−1)ci,j

]2
.

Thus, the fusion center decodes the received data as
hypothesis īmin if

īmin = arg min
i

δ̄i.

Define īsec = arg mini,i�=īmin
δ̄i and δ̄ = δ̄̄isec

− δ̄̄imin
.

Finally, let

γ̄
rj

j =

∣∣∣∣∣∣ln
p

(
ṽ1
j , . . . , ṽ

rj

j |uj = 0
)

p
(
ṽ1
j , . . . , ṽ

rj

j |uj = 1
)

∣∣∣∣∣∣
as the combined channel reliability of the received lo-
cal decision j at the fusion center. According (3),

γ̄
rj

j =

∣∣∣∣∣∣ln
∏rj

k=1 p
(
ṽk
j |uj = 0

)
∏rj

k=1 p
(
ṽk
j |uj = 1

)
∣∣∣∣∣∣

=

∣∣∣∣∣∣
rj∑

k=1

ln
p

(
ṽk
j |uj = 0

)

p
(
ṽk
j |uj = 1

)
∣∣∣∣∣∣ .

From the above equation, we can find that γ̄
rj

j is calcu-
lated based on the summation of all logarithmic terms
with the same weight, which is the concept of the
EGC.

According the above derivation, an adaptive re-
transmission algorithm for the fusion center is devel-
oped as follows:

Step 1: Define the allowed maximum number of
transmission for sensor j as R and the accept-
able channel reliability as Γ. Set rj = 1, for j =
1, 2, . . . , N . Ask all sensors transmit their local
decisions. Compute λ̄

rj

j , for j = 1, 2, . . . , N .

Step 2: Compute δ̄i, i = 1, 2, . . . ,M .

Step 3: Calculate īmin, īsec and δ̄.

Step 4: If δ̄ is lower than a threshold Δ and some
γ̄

rj

j is less than Γ, the fusion center asks sen-
sor j̄min to retransmit its local decision and set
rj̄min

= rj̄min
+ 1, where

j̄min = arg min
j′,rj′≤R

γ̄
rj′
j′ .

Calculate λ̄
rj̄min

j̄min
. Go to Step 2. Otherwise, the

fusion center decodes the received local deci-
sions as Hīmin

.

Notably, in Step 1, the allowed maximum number
of transmissions is set because the sensor has limited
power and the power for a local decision cannot be
infinite in practice. The acceptable channel reliability
is defined for avoiding useless retransmissions due to
low OSNRs [8]. Furthermore, the fusion center must
have enough storage to save R received local deci-
sions for each sensor such that λ̄

rj

j can be calculated
accordingly.

4 Performance Evaluation
The proposed scheme was evaluated using several
simulations, each comprising 106 Monte Carlo tests.
Similar to the distributed classification example in
Section 2.1, a fusion center and N = 10 sensors
were deployed to detect and classify four hypotheses
H1,H2,H3, and H4. We also assumed that these hy-
potheses have Gaussian-distributed probability den-
sity functions with the same standard deviation σ2 and
means 0, 1, 2, and 3, respectively. The attenuation fac-
tors αj in (1) had identical and independent Rayleigh

distributions with E
[
α2

j

]
= 1. Furthermore, CSNR

is 10× log10(Es/N0). The code matrix in Table 1 was
used.

In the first set of simulations, Figure 3 shows per-
formance comparison between the old and new adap-
tive redetection algorithms when τ = 0.4, D = ∞,
and CSNR = 10 dB. The OSNR is normalized by the
average number of observations per sensor for fair
comparison in Fig. 3(a). That is,

OSNR = −10 × log10 σ2 + 10 × log10 Ō, (4)
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Figure 3: In the case of τ = 0.4, D = ∞, and
CSNR=10 dB, performance comparison between the
old and new adaptive redetection algorithms in the
misclassification probability

where

Ō =
1
N

N∑
j=1

Oj .

The new adaptive redetection mechanism outperforms
the old mechanism, especially in low OSNRs.

Figure 4 illustrates performance comparison
among the old (denoted by Old ART) and the new
adaptive retransmission algorithm (denoted by ART-
EGC)when Δ = 4, R = ∞, Γ = 5, and OSNR =
0 dB. The CSNR is also normalized as the OSNR in
(4). The new adaptive retransmission algorithms out-
perform the old mechanism.
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