
Conceptual Modeling of Dynamic Interactive Systems
Using the Equivalent Transformation Framework

*COURTNEY POWELL, KIYOSHI AKAMA

Information Initiative Center,
Hokkaido University,

Kita 11 Nishi 5, Sapporo, 060-0811,
JAPAN

http://assam.cims.hokudai.ac.jp/laboe/eti.html

Abstract: - Conceptualizing, visualizing, reasoning about and implementing Dynamic Interactive Systems (DISs)
are difficult and error-prone activities. To conceptualize and reason about the sorts of properties expected of any
DIS, a framework that most naturally models DISs is essential. The declarative paradigm is closer than any other
to the abstract behavior of DISs. In this paper we propose and explain why the Equivalent Transformation
Framework (with its declarative roots) is an ideal framework for conceptually modeling DIS. The benefits to be
derived from using this framework include guaranteed system correctness, high level abstraction, clarity,
granular modularity, and an integrated framework for reasoning about, manipulating, and optimizing the various
aspects of DISs.

Key-Words: - Conceptual Modeling, Dynamic Interactive Systems, Equivalent Transformation, Correctness,
Abstraction.

1 Introduction
Dynamic Interactive Systems (DISs) consist of
independent objects interacting with each other and
changing states dynamically over time. The
interaction involves both events which occur at
specific moments and more persistent status
phenomena which can be observed any time.
Practical DIS systems consist of multiple objects
operating concurrently (i.e. parallel and
communicating).
 Conceptualizing, reasoning about, and
implementing a DIS are difficult and error-prone
activities. In addition, as argued in [1], the cause of
many other additional difficulties in DIS system
construction is the fact that traditional programming
languages are algorithmic, and thus best suited to
writing programs that acquire all their inputs before
execution and produce a result only on termination.
In contrast, DISs by their nature obtain inputs and
output results throughout the life of the program. As a
result DISs are incompatible with algorithmic
languages. Current methods used to overcome this
incompatibility add to system complexity.
 Even though a variety of abstractions have been
developed for modeling and reasoning about
interactive systems (and by extension DISs), there is

a lack of a coherent and robust paradigm for building
robust DISs. Algorithmic languages treat programs as
black boxes which produce final values on
termination [1]. However, DISs are open to
observation and influence from outside and must be
able to adjust their internal states in response to each
interaction in order to maintain the consistency of the
computation.
 Humans are incapable of reasoning properly using
the technical logic used in computers; doing this only
results in innumerable mistakes [3]. Therefore it is of
vital importance that rules be developed for human
reasoning. For DISs, modeling provides the means of
doing this. Good models result in natural flow of
programming from idea to implementation;
manageable modules and a means of modification
without major reorganization of the software. On the
flip side, bad models can result in a “series of nasty
surprises” [2]. These include interfaces that become
clumsy because they are forced to accommodate
unexpected interactions, and difficulty making even
the simplest changes. The many difficulties involved
when such a bad abstraction is used oftentimes can
only be corrected by starting over from scratch (i.e.
from the idea stage). Thus, we can see that using the
right model is of paramount importance.

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 253

 The ET Framework [4, 6] not only supports
interaction and dynamism directly (stemming from its
declarative foundation) but can also efficiently adjust
its computation to input changes. As a result it can be
used to model DISs in abstract and then transform the
optimized program into the target language. In
addition, the ET Framework is very close to how
humans actually think and so, we believe that by
using the ET Framework to model systems we can
bridge the gap between the type of reasoning that
comes naturally to humans and the type of technical
logic required by computers with regards to DISs.

2 Dynamic Interactive Systems Scope
Four of the most important concepts in DISs are:1)
objects; 2) events; 3) state; and 4) interaction. An
object can be regarded as any item that can be
individually selected or manipulated, e.g. a data file,
or piece of text. An event is something that occurs in
a specific place at a particular instance in time, or
interval of time. As a result, it is regarded as an
atomic, non-persistent occurrence. A state, on the
other hand, persists and has a measurable value at any
given moment. Interaction takes the form of both
object to object communication and environment to
object communication.
 Databases are a form of DIS. In database systems
multiple concurrent users access, view and may
modify data (i.e. the attributes of entities). As a result
of the access and modification by multiple users the
data in the database is constantly changing and can
thus be viewed as being dynamic. Interaction takes
the form of users interacting with the data.
 Another form of DIS is Web based systems. These
systems must also have the ability to accommodate
access by multiple concurrent users.
 DISs range from the very simple (e.g. a Ping-Pong
game) [7] to the very complex (e.g. a climate system).

2.1 Features of Dynamic Interactive Systems
Two of the major features of DISs are: (1)
Independence and; (2) parallelism (concurrency). All
objects in the system operate independently of each
other. As a result, the state of, and the standard
actions carried out by an object are not dependent on
the other objects in the system. Parallelism refers to
the fact that all objects can carry out various (similar
and/or dissimilar) actions concurrently.

 DISs consist of two sides: (1) Procedural and; (2)
declarative. The procedural side includes simple
procedural oriented applications, while the
declarative side includes database systems and takes
into consideration such attributes as correctness.

3 Modeling Dynamic Interactive

Systems using ET
Equivalent Transformation (ET) [4, 6] is a new
computational paradigm that is based on semantic
preserving clause transformations carried out by sets
of rewriting rules generated from specifications. In
the ET Framework (ETF), a given complex problem
is transformed successively and equivalently into a
simpler problem until a problem from which answers
can be directly or easily obtained is reached.

3.1 Representation and Computation with

ET Rules
An ET rule describes methods of rewriting various
clauses into other clauses (or sets of clauses). A rule
specifies, in its left-hand side, a pattern of atomic
formulas to which it can be applied, and defines the
result of its application by specifying, in its right-
hand side, one or more patterns of replacement atoms.
The rule is applicable to a definite clause when the
pattern in the left-hand side matches atoms contained
in the body of the clause. When applied, the rule
rewrites the clause into a number of clauses, resulting
from replacing the matched body atoms with
instances of the patterns in the right-hand side of the
rule. The actual computation of the solution to a
problem is accomplished by the repeated application
of equivalent transform rules.
 There are two types of ET rules. These are: 1) D-
Rules (deterministic) and, 2) N-Rules (non-
deterministic).

3.1.1 ET Variables
The ETF consists of named and anonymous
(unnamed) variables. A named variable begins with
the asterisk symbol, ‘*’ and is followed by a letter,
numeral, etc. (e.g. *X, *X1, *5). An anonymous
variable begins with the question sign symbol ‘?’ and
may or may not be followed by a letter or numeral.
(e.g. ?, ?X, ?5). Wherever a named variable changes,
other variables having the same name will change
simultaneously. In contrast to this, anonymous

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 254

variables, even if they have the same name, are each
treated as different variables.
 Objects can be richly expressed using information-
attached variables (variables to which information
has been attached). This type of variable has the
format: *x~(information). Here ‘*x’ represents the
information-attached variable; (information) is the
attached information; and the sign tilde (~) ties the
information to the variable.
 An ET variable exists only in the rule in which it
was created, so it is limited in scope. For example, a
variable, *var1, created in a rule, rule1, will be
different from a variable with the same name, *var1,
in rule, rule2. As a result, variable communication
takes place only within the rule in which the variable
was created. Since ET uses pattern matching, instead
of determination of input clauses by unification,
inter-rule communication is in the form of values, not
names.
 ET variables are immutable, i.e., once an ET
variable is assigned a value that value does not
change. After a particular rule has been applied to a
clause, the variables (and by extension the values
they contain) in that rule, are destroyed. In the next
computation cycle, new variables are created and new
values assigned. In this way, values are changed in
ET rules.

3.1.2 Object Creation and Termination
In the ETF, a problem is formulated as a declarative
description, represented by the union of two sets of
definite clauses, one of which is called the definition
part, and the other the query part. The definition part
provides general knowledge about the problem
domain and descriptions of some specific problem
instances. The query part specifies a question
regarding the content of the definition part. From the
definition part, a set of ET rules is prepared. The
problem is then solved by transforming the query part
successively, using the ET rules, into another set of
definite clauses from which the answers to the
specified question can be obtained easily and directly.
 The query part described above can be used to
represent an object. This object is expressed as a
definite clause in the format:

 head ← atom1, atom2, atom3, atom4, atom5.

Where head represents the object and the body atoms
represent the internal components of the object.

 In the ETF computation of a program takes the
form of state transitions, where problems are
regarded as states. A final state is a problem that
consists of only unit clauses, which is of the form:

 head ←.

 The computation of a program prg on a problem
prb is a nonempty finite or infinite sequence com =
[st0, st1, st2, …] of states such that st0 = prb and the
following conditions are satisfied: (1) for any two
successive states sti, sti+1 in com, sti is not a final state
and prg transforms sti into sti+1 in one step; (2) if com
is finite, then last(com) is the final state or prg is not
applicable to last(com), where last(com) denotes the
last element of com.
 If com is finite and last(com) is the final state, then
the answer set obtained from com is the set

 {g | ((a ←) ∈ last(com)) & (g is a ground instance of a)},

and is undefined otherwise.
 As a result, each state transition carried out by the
ET program will result in a change in state of the
object (an instance of the object). This is represented
by the state of the definite clause at each successive
transformation stage during the application of ET
rules. The unit clause that remains at the end of
computation represents the terminated object.

3.1.3 ET and Event-driven Semantics
The notion of events plays a central role in the
construction of most software that involves
interaction or simulation. However, in these systems,
the events are often just symbols with no intrinsic
meaning. ET rules easily satisfy event-driven
semantics and also provide intrinsic meaning to the
events. If we regard events as inputs from the
environment (inputs originating outside of the rule),
then an ET rule that possesses a condition section will
be inherently event driven. That is, the condition
section has to be satisfied before the rule can be
executed. The condition to be satisfied is dependent
on forces external to the rule.

3.2 Modeling using ET
DISs comprise a number of objects, interaction
between objects and, interaction between objects and
their environment. In the ETF, these are realized by

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 255

means of atoms, rules, and events (installed
predicates).

3.2.1 Object Representation and Manipulation
If we use an atom to represent an object, the internal
state of the object (atom) can be represented by a
definite clause of the form:

 atom ← atom1, atom2, atom3, atom4, atom5.

To move this atom and describe its interactions with
other atoms and the environment, rules are used. A
typical rule is of the form:

atom1, atom2, {event} ==> {specialization}, atom3, atom4.

Some of the ways in which this rule can be used are:
(1) Changes in atoms appearing in the rule are
expressed by means of atom replacement and
specialization; (2) atoms that are changed without the
changes appearing in the rule (i.e. changes are not
transparent to the rule) are expressed by means of
specialization; (3) changes influenced by the
environment are received and examined via events.

3.2.2 Advantages of the Description Methods
Some of the advantages of these description methods
are: (1) The model used is a combination of the
clause and rule models, which are both well known
models; as a result, it has clarity and significance and
is general purpose; (2) the modification being
expressed by the rule is localized so efficient
execution is possible; (3) as a result of their high
level of independence, rules are very easy to write
and; (4) events are handled uniformly as installed
predicates.

3.2.3 Analysis of Interaction
In the modeling of DISs we can divide its domain
into two parts – object and environment. Interaction
between objects is represented using ordinary rules.
Interaction between objects and the environment is
expressed by means of event-driven rules. In this case
interaction is achieved through: (1) Change based on
replacement with rule (head and body); (2) change
based on specialization with rules (through the
medium of variables, or even other atoms); (3)
through the use of getContext it is possible to obtain
the status of atoms that are not head atoms and; (4)

through the use of events influences from the
environment can be accommodated.

4 The Declarative Side: Correct

Problem Solving
In this section we will explain some of the features of
the declarative side as it relates to ET and DISs.

4.1 Definite Clause Set and its Meaning
A definite clause, C, is an expression of the form h ←
b1, b2, …, bn, where n ≥ 0. h is called the head of C
and is denoted by head(C). The set {b1, b2, …, bn} is
called the body of C and is denoted by body(C).
When n = 0, C is said to be a unit clause. When all
atoms appearing in the definite clause, C, are ground
atoms, C is said to be a ground clause. The set of all
definite clauses is denoted by Gclause. A declarative
description is a set of definite clauses.
 A set of ground atoms represented by a declarative
description, P, is called the meaning of P, denoted by
M(P), and is defined as:

Where:

x is an arbitrary set of ground atoms, θ a
specialization, S a set of specializations. M(P) is a
least fix point of TP , and agrees with a least model
when a definite clause is regarded as a logical
formula.

4.2 The Intersection Problem
Let D be a set of definite clauses. Let Q be the set of
atoms which represent the set of all queries for D.
Then a problem is given in the form of the pair (D, Q).
For any atom α, let rep(α) denote the set of all
ground instances of α. Consider computing the
solution set A which satisfies A = M(D) ∩ rep(q) for
a query q ∈ Q.

Theorem 1. For a query q, let q′ be the atom obtained
from q by changing its predicate into one that does
not appear in D. Then:

M(D) ∩ rep(q) = {q|q′ ∈ M(D ∪ {q′ ← q})}.

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 256

Theorem 2. For a set of unit clauses, denoted by F,

A rule r is an ET rule in D, iff

(S, S′) ∈ r ⇒ M(D∪ S) = M(D∪ S′) (1)

for arbitrary sets S and S′ of definite clauses. Let Q0
be a set of definite clauses that is defined by Q0 =
{ans(q) ← q}. Let also Qn (0 ≤ n < ∞) be a set of unit
clauses. Assume that we have a transformation
sequence Q0 →…→ Qn obtained by applying ET
rules successively. Then from Theorems 1, 2, and (1):

 A program in the ET model is a set of rules which
executes ET such that:

Q0 →…→ Qn
M(D ∪ Q0) = … = M(D ∪ Qn)

starting from Q0 = {ans(q) ← q} for all q ∈ Q, and
finally computes A [5].

4.3 Correctness
Discussions of correctness must take into
consideration the intended meaning of a program. An
intended meaning of a program is a set of ground
goals. A program P is correct with respect to an
intended meaning M iff M(P) is contained in M.
That is, the program should do only what we intended
it to.
 In a Rule-based Equivalent Transformation
(RBET) framework, such as the ETF, the correctness
of computation relies solely on the correctness of
each transformation step. Given a declarative
description D ∪ Q, where D and Q represent the
definition and query parts of a problem respectively.
The query part Q is said to be transformed correctly
in one step into a new query part Q′, by the
application of a rewriting rule, iff the declarative

they have the same declarative meaning. A rewriting
rule is considered to be correct, iff its application
always results in a correct transformation step.

descriptions D ∪ Q and D ∪ Q′ are equivalent, i.e.,

.4 ET Computation and Correctness
a set of

l is a set of rewriting

 Why the ET Framework can

e fol among the

able

2.

3. – In order to

4
In the ET model a problem is represented as
definite clauses, and a specification is a pair (D, Q),
where D is a set of clauses representing background
information (i.e. general knowledge about an
application domain and description of particular
domain instances), and Q is a set of problems, each of
which is also a set of definite clauses. It is required
that for each problem q ∈ Q, the predicates occurring
in the heads of clauses in q occur neither in D nor in
the bodies of the clauses in q.
 A program in the ET mode
rules and program computation consists of successive
rule application. A program prg is partially correct
with respect to a specification S = (D, Q) iff for each
q ∈ Q, prg yields the correct answer set to q
whenever it transforms q into a set of unit clauses in
a finite number of transformation steps. It is totally
correct with respect to S iff it is partially correct with
respect to S and it always terminates with a set of unit
clauses when executing each problem in Q.

5
 Effectively Model DISs
Th lowing features of the ETF are
many reasons why it is ideal for modeling DISs:
1. Clarity - ET rules are intuitively understand

and, in the ETF the states of objects are clearly
discernable as the state of its computation is
clearly shown. This type of clarity allows us to
check whether or not a change of state is valid.
Rich Expressivity - The status, properties and
interactions associated with an object can be
richly expressed in ET using information-
attached variables and ET rules.
Nondeterminism and Parallelism
reliably model independent concurrent objects
and their interactions the ability to simulate
parallel processes is invaluable. The inherent
nondeterministic nature of the ETF gives us the
ability to simulate either of three (3) types of
parallelism. These are: (1) OR-parallelism; (2)
AND-parallelism and; (3) Rule-parallelism
(unique to the ETF).

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 257

4. High Level Abstraction - An abstraction is an
idea reduced to its essential form [2]. It provides
us with the ability to focus on a concept while
safely ignoring some of its details (i.e. different
details are handled at different levels). The best
abstractions capture their underlying ideas
naturally and convincingly and provide a means
of visualizing, expressing, analyzing,
manipulating, and optimizing an idea before
commitment to code. Without abstractions
systems tend to be overly complex and
intellectually hard to manipulate. Languages that
support abstraction are needed in order to create
intellectually manageable programs. The ETF
operates at the conceptual level and so it both
supports and provides a high level of abstraction.
As a result the system can be freely manipulated
and optimized without the restrictions associated
with concrete implementation details such as
type declaration, memory allocation, etc.

5. Independent Rules - The highly independent
nature of ET rules further strengthens the
capability of the ETF to provide powerful
abstractions. As each rule can be written and
focused on exclusively, we are able to use
different rules to safely and independently
represent differing types and levels of details in
an abstraction.

6. Dynamic Addition and Deletion of Rules - In the
ETF rules can be dynamically added and deleted.
This gives additional versatility in the real-time
representation of new information and the
dynamic addition and deletion of objects.

7. Natural Connection to Aspects of Database
Systems - The ETF connects naturally to the
semantics and reasoning underlying database
systems. Atoms can be used to represent entities.
The relation between entities and their
interactions can be represented by rules.

8. Guaranteed Correctness - The structure of the
ETF guarantees correct operation of the system.
This was explained fully in sections 4.3 and 4.4.

9. Declarative Semantics - DISs inherently satisfy a
declarative model of computation [1]. They are
required to accommodate new information at
random points in time, while maintaining the
consistency of their computations. This is easily
done in the declarative paradigm while in the
algorithmic paradigm new information may
render the algorithm completely useless. The
underlying declarative semantics of the ETF

provides us with a means of connecting directly
to the underlying nature of DISs and thus enables
us to visualize and model all of its various
aspects.

10. Integrated System - The ETF is an integrated
modeling system, i.e., it is able to model the
entire DISs’ spectrum without the need for any
component external to the framework.

6 Conclusion
In this paper we looked at some of the problems that
currently obtain in the construction of Dynamic
Interactive Systems (DISs); and examined why and
showed how the ET framework (ETF) can be used to
overcome these difficulties. We also explained how
the ETF can give a comprehensive conceptual model
for DISs, which is intuitive, coherent, robust and
correct. This model of DISs in the ETF, and the
benefits contained therein, can be easily implemented
in the language(s) of choice by transformation.

References:
[1] X1. R. Perera, Programming Languages for

Interactive Computing, Dynamic Aspects,
http://dynamicaspects.com/papers/FInCo2007.pdf,
March 2007.

[2] X2. D. Jackson, Software Abstractions: Logic,
Language, and Analysis, The MIT Press, 2006.

[3] X3. B. Mills, Theoretical Introduction to
Programming, Springer-Verlag, 2006.

[4] X4. H. Koike, K. Akama, and H. Mabuchi, A
Programming Language Interpreter System Based
on Equivalent Transformation, Proceedings of
Intelligent Engineering Systems (INES ’05), 2005,
pp. 283 – 288.

[5] X5. S. Miyajima, K. Akama, H. Mabuchi, and Y.
Wakamatsu, Detecting Incorrect Rules
Automatically in Equivalent Transformation
Programs, Proceedings of the 2nd International
Conference on Innovative Computing,
Information and Control (ICICIC 2007).

[6] X6. The ET Framework
 http://assam.cims.hokudai.ac.jp/laboe/eti.html.
[7] X7. C. Powell and K. Akama, Structured

Development of DHTML Programs from Abstract
Ideas Based on the Equivalent Transformation
Framework, Proceedings of the 2nd International
Conference on Innovative Computing,
Information and Control (ICICIC 2007).

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 258

