
Development of control algorithms for a self-learning mobile robot

Ionut Resceanu, Marius Niculescu
Faculty of Automation, Computers and Electronics

University of Craiova
Bd. Decebal, Nr.107, 200440, Craiova

ROMANIA

Abstract: - Autonomous learning robots have the advantage over manually programmed robots in that they are
able to adapt to varying conditions, both internal to the robot (e.g., energy levels) as well as external
environmental conditions (e.g. obstacles, light). In this project, there were analized the possibilities to
implement a robot that learns how avoid obstacle using online self-adaptation. Initially it was sudied and
implemented a robot that explores an unknown path, using touch sensors and an obstacol detector to find its
way during the exploration. Finally it was implemented a genetic algorithm on the robot and experimented
with using genetic algorithm as a form of robot learning. The robot was built using the Lego RCX.

Key-Words: Robots; Learning; Genetic Algorithms; Mobile robotics; Lego RCX; control algorithms

1 Introduction
The goal for real-time mobile robots is to travel
while avoiding obstacles in a navigation
environment. Autonomous navigation allows robots
to plan their path without the need for human
intervention. The pathplanning problem has been
shown to be difficult, thus this problem is often
solved using heuristic optimization methods such as
genetic algorithms. An important part of the genetic
algorithm solution is the structure of the genotype
that represents paths in the navigation environment.
The genotype must represent a valid path, but still
be simple to process by the genetic algorithm in
order to reduce computational requirements.
Unfortunately, many contemporary genetic path-
planning algorithms use complex structures that
require a significant amount of processing, which
can affect the real-time response of the robot.
Mobile robots are desirable for operations such as
bomb disposal or hazardous material management,
which would be potentially dangerous for humans.
An important task for the robot is autonomous
navigation, where the robot travels between a
starting point and a target point without the need for
human intervention. While basic information may be
available to the robot about the navigation area
boundaries, unknown obstacles may exist within the
navigation area. This is called an uncertain
environment: the robot must be able to maneuver
around these obstacles in order to reach its target
point. The world space refers to the physical space
in which robots and obstacles exist - the free space
is the subset of the world space that is not occupied

by obstacles. A path between the starting and target
points that avoids collisions with obstacles is said to
be feasible - this is a path that lies within free space.
Thus, robot navigation methods need to solve the
path-planning problem, which is to generate a
feasible path and optimize this path with respect to
certain criteria.
Applying learning algorithms such as machine
learning and reinforcement learning to real physical
robots is an area of active research in embodied
intelligence. [15, 16] Autonomous, online learning
robots possess the ability to operate in complex,
dynamic environments through training and
instruction to improve the robots’ connection
between its perception and action. These learning
techniques are often superior to conventional
programming because it is often difficult to design a
robot that caters to all the variables in the real
physical world.
Another application of autonomous learning robots
is in collaborative multi-robot environments.[7] It
was shown that the complex emergent behaviors of
insect colonies such as division of labor and self-
organization are results of interaction of individuals
with simple behaviors and learning capabilities.
Individual autonomous, learning robots form the
basis for collaborative robot research.[1, 5]
In this project, it was implemented an autonomous,
learning robot that performs exploration of the
environment and learns how to avoid obstacle
effectively. In other words, it was integrated sensor
learning with robot control and implemented it on a
real robot. The robot’s controller is implemented

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 300

with the subsumption architecture that allows the
robot’s various behaviors (exploration, obstacle
avoidance, collision resolution, etc.) to interact in a
hierarchical manner.[3]
Subsumption architecture is a way of decomposing
complicated intelligent behaviour into many
"simple" behaviour modules, which are in turn
organized into layers. Each layer implements a
particular goal of the agent, and higher layers are
increasingly more abstract. Each layer's goal
subsumes that of the underlying layers, e.g. the
decision to move forward by the eat-food layer takes
into account the decision of the lowest obstacle-
avoidance layer.
For example, a robot's lowest layer could be "avoid
an object", on top of it would be the layer "wander
around", which in turn lies under "explore the
world". The top layer in such a case could be "create
a map", which is the ultimate goal. Each of these
horizontal layers accesses all of the sensor data and
generates actions for the actuators — the main
advantage is that separate tasks can suppress (or
overrule) inputs or inhibit outputs. This way, the
lowest layers can work like fast-adapting
mechanisms (reflexes), while the higher layers
control the main direction to be taken in order to
achieve the overall goal. Feedback is given mainly
through the environment.[14]
In our implementation of the obstacle avoidance
behavior in the robot, the threshold used by the
proximity sensor for obstacle detection can vary
according to the robot’s speed, battery power and
other environmental conditions. Through online
self-adaptation, the robot will learn to adjust this
parameter according to its own physical state and its
surrounding environment.
Although self-adaptation and robot learning does
provide us with a more robust design, programming
a robot controller and fine-tuning its parameters are
tedious and time-consuming tasks. The final phase
of our project involves the implementation of
genetic algorithms to evolve an obstacle avoiding
robot. In other words, we utilize genetic algorithms
as a form of robotic learning.

2. Robotic Control

2.1 Deliberative Architectures
Deliberative control takes into consideration all of
the available sensory information and amalgamates
them with all the controller’s internal “knowledge”
to create a plan of action. A symbolic model of the
world is explicitly represented and decisions are

made based on logical reasoning. The control
searches through all the possible actions plans until
it finds a suitable one. This search sequence can take
a long time and is hence not suitable in situations
where the robots are expected to react quickly.
Furthermore, there is often a problem in translating
the real physical world into an accurate and
sufficient symbolic representation for the robot to
make meaningful decisions

2.2 Reactive Architectures
In sharp contrast to deliberative architectures are
reactive architectures, where the perception is tied
closely to the effector action. The architecture does
not entail any kind of symbolic world model and
does not use complex reasoning. The reactive
control is essentially a reflex mechanism where
stimulus-response pairs govern actions. The main
advantage of robots with reactive control is that they
respond quickly to a changing environment where
no a priori information is available. The system
requires small amount of memory and does not
compute or store representations of the world. The
inability to learn over time is perhaps is main
drawback of reactive architectures.[10]

2.3 Programming Environments
To provide means for controlling of the Mindstorms
robot that will be deployed within the RCX is a
central assignment of this project. How will we
implement programs that run on the RCX and what
programming environment do we employ for this
task?

2.3.1 Rcx Code
The first thing that comes to mind is to use RCX
Code, the Mindstorms SDK, which is part of every
robotics kit. Rcx Code is a proprietary graphical
software developer’s kit that is targeted at an
audience not experienced in programming.
Programs written with RCX Code are compiled into
a sequence of opcodes and are then uploaded to the
RCX via infrared. There are several disadvantages
of that system though, the most significant ones
being the following: unsatisfactory level of access to
the internals of the RCX, no support of
communication with the PC (upload only) and no
way to program multi-threaded applications. Last
but not least, one soon gets tired of assembling
programs from graphical ”command bricks” using
the mouse.

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 301

2.3.2 Alternative RCX Programming

Within several weeks of the first release of
Mindstorms, the hardware internals of the RCX
were reverse engineered and made available
publicly to the interested. A few months later, the
open source community had produced a series of
alternative ways to program the RCX, sometimes
along with alternative firmwares. The most
important of those are:
BrickOS, a C-based firmware which allows to write
robot programs in standard C, using the standard
GNU compiler tools. BrickOS gives complete low-
level access to all of the RCX’s internals. It is used
mainly by system programmers who desire to take
advantage of the last bit on the RCX.
NQC, a high level language with a C-like syntax.
Comes with a compiler to produce opcode programs
for the original LEGO firmware. NQC is the best
established alternative programming system for the
RCX. It is powerful yet easy to learn and not as
complex as the original C-language.
LeJOS, a small Java Virtual Machine (JVM)
implementation that runs on the RCX. This
firmware gives users the chance to write control
programs for robots in pure Java and comes with a
fairly large API. LeJOS also includes a
communications package that makes it very easy to
establish a stream-based communication between
PC and RCX.
Each of those high-level programming language
implementations gives access to all of the RCX
hardware and allows to write complex programs for
the Hitachi 8300 micro controller. And since the
purpose of this project is to analize the posibilities of
development in this field there will be studied both
the LeJOS, in the first part, NQC for the enhanced
exploring robot and the BrickOS in the last
part.[9,10]

LeJOS
LeJOS was originally conceived as TiniVM by Jose
Solarzano who was challenged by the task of
implementing a Java virtual machine for the RCX
platform. The resulting interpreter had a size of
about 10 kB which left about 18 kB RAM for Java
programs and o®ered the following features (among
others): Java on the RCX, preemptive threads,
arrays, recursion, synchronization and exceptions.
After the stable release of TinyVM the e®ort of
completing and extending TinyVM was continued
by other open source developers as the LeJOS
project. The interpreter grew in size up to about 17
kB, almost inverting the ratio of program memory
vs. firmware size.[10]

Tools
The LeJOS distribution comprises of a linker that
produces a binary file from class files and a loader
that performs the upload of this binary file to the
RCX. An uploaded binary file is copied verbatim
into memory on the H8300 and executed as soon as
the user presses the ON button on the RCX brick.

NQC
NQC stands for Not Quite C, and is a language for
programming several LEGO MINDSTORMS
products. Some of the NQC features depend on
which MINDSTORMS product you are using. This
product is referred to as the target for NQC.
Presently, NQC supports five different targets:
RCX, RCX2 (an RCX running 2.0 firmware),
CyberMaster, Scout, and Spybotics.
All of the targets have a bytecode interpreter
(provided by LEGO) which can be used to execute
programs. The NQC compiler translates a source
program into LEGO bytecodes, which can then be
executed on the target itself. Although the
preprocessor and control structures of NQC are very
similar to C, NQC is not a general purpose language
- there are many restrictions that stem from
limitations of the LEGO bytecode interpreter.

Types and Modes RCX
The sensor ports on the RCX are capable of
interfacing to a variety of different sensors (other
targets don't support configurable sensor types). It is
up to the program to tell the RCX what kind of
sensor is attached to each port. A sensor's type may
be configured by calling SetSensorType. . There are
four sensor types, each corresponding to a specific
LEGO sensor. A fifth type
(SENSOR_TYPE_NONE) can be used for reading
the raw values of generic passive sensors. In
general, a program should configure the type to
match the actual sensor. If a sensor port is
configured as the wrong type, the RCX may not be
able to read it accurately.

SetSensor(SENSOR_1, SENSOR_TOUCH); // a
touch sensor
SetSensor(SENSOR_3, SENSOR_TOUCH); // a
touch sensor
SetSensor(SENSOR_2, SENSOR_LIGHT); // a light
sensor
SetSensorMode(SENSOR_2,
SENSOR_MODE_RAW); // raw value from 0 to
1023

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 302

Navigation Implementation in Lejos
The RCX has a send message command that
activates the IR port. To keep flashing the IR light
while driving about, the rovers must a send message
a couple of times each second. It doesn’t matter
what message we send, 0 or 255 , we have no
reason to believe that it matters.
To detect reflecting obstacles we have to look for
rapid changes in the light sensor reading. The best
way to do this, is to sample the sensor quite often
and compare two and two readings. If the difference
between them is more than a set threshold we count
that as an impulse _ the proximity detector has been
tripped. This is very reliable, and experiment prove
it detects almost anything from white walls to black
boots or transparent soda bottles. And putting a
small roof over the light-sensor to shield it from
overhead light will even enhance the working range
of the sensor a great deal.
This idea is implemented in a proximity library. In
this library one small "driver task" periodically
activate the IR transmitter and another small "driver
task constantly polls the light sensor and checks for
changes larger than some calibrated threshold value.
If it finds such value it increases the global variable
ProximityCounter. [9,10,12]
Below we have the run method of the
ProximityDetector Thread. We first colect the value
read by the light sensor, and then have the
transciever send a packet of data and after a shor
wait, we read the current value of the light sensor
indication and compare it to our old value of light
intensity. If the difference has become grater than
the predefined proximity threshold, the listeners will
be notified that an obstacle has been detected, and
perform the coresponding actions for avoiding it.

public void run() {
 int oldValue;
 int newValue;
 // loop
 while(true) {
 // The old value read by the light sensor.
 oldValue = Sensor.S2.readValue();
 // IR trasciever send packet.
 Serial.sendPacket(packet, 0, 1);
 try {
 Thread.sleep(5);
 }catch(Exception e){}
 // Read new light sensor value.
 newValue = Sensor.S2.readValue();
 // Perform differencing
 int diff = Math.abs(oldValue - newValue);
 LCD.showNumber(diff);
 if(diff > proximityThreshold) {

 notifyListeners(diff);
 }
 try{Thread.sleep(160);}catch(Exception e){}
 }
 }

2.4 Learning
The robot learning problem is to design a robot so
that it improves its performance through experience.
To be precise, we must specify what performance
and what experience are. Suppose the robot’s
performance is to be evaluated in terms of its ability
to achieve some set of goals G. More precisely,
suppose each goal is of the form X → Y : R where X
and Y are both conditions representing a set of
possible states and where R is some real valued
reward. The goal X → Y : R is interpreted as if the
robot finds itself in a state satisfying condition X
then the goal of reaching a state satisfying condition
Y becomes active, for which a reward R is received.
For example_ the goal of recharging the battery
when it is low can be represented in this way, by
setting X to the sensory input “battery level is low”,
Y to the sensory input robot senses that it is
electrically connected to the battery recharger and R
to 100. Given a set of such goals we can define a
quantitative measure of robot performance such as
the proportion of times that the robot successfully
achieves condition Y given that condition X has
been encountered, or the sum of the rewards it
receives over time. If we wish, we might further
elaborate our measure to include the cost or delay of
the actions leading from condition X to condition Y.

2.4.1 What and How to Learn
What and how should we design robots to learn.
Two important dimensions along which approaches
vary are the exact functions to be learned and the
nature of the training information available. Here we
consider a few possible learning approaches, then
summarise some of the more significant dimensions
of the space of possible approaches.
The most direct way to attack the robot learning
problem is to learn the control function f directly
from training examples corresponding to input-
output pairs of f. Recall that f is a function of the
form f : S → A where S is the perceived state and A
is the chosen control action.[7, 15]
In some cases, training examples of the function f
might not be directly available. Consider for
example a robot with no human trainer. with only
the ability to determine when the goals in its set G
are satisfied and what reward is associated with
achieving that goal. For example, in a navigation

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 303

task in which an initially invisible goal location is to
be reached and in which the robot cannot exploit any
gradients present in the environment for navigation,
a sequence of many actions is needed before the task
is accomplished. However if it has no external
trainer to suggest the correct action as each
intermediate state, its only training information will
be the delayed reward it eventually achieves when
the goal is satisfied. In this case it is not possible to
learn the function f directly because no input-output
pairs of f are available. An alternative approach that
has been used successfully in this case is to learn a
diferent.[16]

3. Experiment & Results
3.1 Evolving The Robot Controller Using
Genetic Algorithms
In this section, we describe the final piece of our
implementation - genetic algorithm on the robot
controller in an attempt to evolve the obstacle
avoidance behavior. We make use of 8 state FSAs to
represent the controller of the robot. The actions
Forward, Left, Right and Reverse are encoded (in
binary) as 00, 01, 10 and 11 respectively. The
robot’s genotype (controller) is obtained by first
ordering the Old State, Input pairs lexicographically.
The robot’s genotype is obtained by concatenating
the corresponding Next State, Action . The Input
value is 1 if the robot’s proximity sensor senses an
obstacle, 0 otherwise.

Parameter Value
Population Size 5
Generations 10
Probability of Choosing Individual 50%
Steps/Iteration 100
Probability of Mutation 1%
Proportion of Population Mutated 40%
Crossover Points 1
Proportion of Population Crossover 40%

Table 1: Parameters for Genetic Algorithm

Table 1 shows the list of parameters used in the
genetic algorithm that we implemented on the robot
.The robot is simulated for 100 exploration time
steps for each controller i.e., the Explore AFSM is
executed 100 times. At each simulation, the robot is
initialized with an initial fitness of 100. If it hits an
obstacle, the robot’s fitness is decreased by 1. If the
robot moves forward, its fitness is increased by 1.
Otherwise, its fitness value remains the same. The
robot stops after each simulation and will start the

next simulation upon user input (via the RCX’s
PRGM button i.e., we overwrote the function of the
PRGM button).

3.2 Evolving the Robot’s Controller
In building the robot, we realize that fine tuning the
robot’s parameters such as threshold values takes a
lot of time and effort and gets increasingly difficult
when the robot’s controller becomes more complex.
We further experimented with genetic algorithms in
an attempt to evolve a robot controller to avoid
obstacles. This experiment was not complete but
serves as a baseline for using genetic algorithms on
our robot implementation.
We implemented a genetic algorithm on top of the
the simple version of the robot controller. The input
to the controller is a binary value that tells if there is
an obstacle in front of the robot. We overwrite the
RCX’s PRGM button such that the robot will stop
after each simulation and this button will have to be
pushed for the robot to start the next simulation (of
the next individual). The robot is initialized with a
fitness of 100 and this value is decreased when the
robot collides with an obstacle. The robot’s fitness is
incremented only when it moves forward; otherwise,
the robot could keep turning in circles and still
achieve optimal fitness.

4 Conclusion

Our experiments reinforced our knowledge that
building a physical robot that operates in the real
world environment is very different from simulation
e.g., of Braitenberg vehicles. There are a variety of
reasons for this phenomenon, including both
external and internal (to the robot). External factors
include:
 Concurrent tasks: Most robot implementation have
some form of concurrent tasks to control the various
behaviors of the robots. Too many concurrent tasks
proved complex and difficult to get right.
Furthermore, since we have only a single processor
that implements a time-slicing scheme among the
different tasks and the robot is required to react
quickly at times, timing became a major issue i.e.,
insufficient time window to be shared among all the
different tasks.
 Software abstraction: Software abstraction makes
programming a much easier task. The problem with
software abstraction is that it tends to abstract away
some important timing and synchronization issues in
programming the robot. We found that LegOS is a
very powerful environment, which allows you to

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 304

program in the standard ANSI C/C++ and utilize all
32 KB of RAM rather than limiting us to the number
of variables as defined by the microcontroller. There
are also a couple of pitfalls in using legOS. Firstly,
legOS has a priority inversion problem that we have
to solve by implementing our own synchronization
primitives. Secondly, legOS’s floating point
calculation takes approximately twice as integer
operations. We took care not to use floating point
numbers in our legOS program.

References:
[1] Bonabeau, E., Theraulaz, G., Deneubourg, J.-L.,

Aron, S., and Camazine, S. Self-Organization in
Social Insects. Trends in Ecology & Evolution,

12:188-193, 1997.
[2] Brooks, A. B. A Robot that Walks; Emergent

Behavior for a Carefully Evolved Network. In
Proceedings of IEEE International Conference
on Robotics and Automation, Scottsdale, AZ,
May 1989.

 [3] Brooks, A. B. A Robust Layered Control
System for a Mobile Robot. IEEE Journal of
Robotics and Automation, Vol. 2, 1: 14-23,
March 1986.

[4] Carbonell, J. G., Knoblock, C. A., and Milton, S.
PRODIGY: An Integrated Architecture for
Planning and Learing. Technical Report, CMU-
CS-89-189, October 1989.

[5] Capaldi, E. A., Smith, A.D., Osborne, J.L.,
Fahrbach, S.E., Farris, S.M., Reynolds, D.R.,
Edwards, .S., Martin, A., Robinson, G.E., Poppy,
G.M., Riley, J.R. Ontogeny of orientation flight
in the honeybe revealed by harmonic radar.
Nature 403: 537-540, 2000.

[6] Chuang-Hue Moh, Research Assignment 4,
6.836 Embodied Intelligence, Massachusetts
Institute of Technology, April 2002.

[7] Collaborative Mobile Robots for High-Risk
Urban Missions. Stanford University.

http://underdog.stanford.edu/tmr/.
[8] Johnson, S., Blanchard, K. Who Moved My

Cheese: An A-Mazing Way to Deal with Change
in Your Work and Your Life. Putnam Publishing
Group, September 1998.

[9] LegOS. http://legos.sourceforge.net/.
[10] LeJOS. http://lejos.sourceforge.net/.
[11] Pedersen, M. H., Klitgaard, M. and Thomas, C.

Solving the Priority Inversion Problem in legOS.
University of Aalborg, UK, May 2000.
[12] Newell, A., and Simon, H. A. Computer

science as empirical enquiry: Symbols and
search. Communications

of the ACM, Vol. 19, 3: 113-126, March 1976.

[13]Not-Quite-C.http://www.enteract.com/
dbaum/nqc/.

[14] Peng, J. and Williams, R. J. Technical Note:
Incremental Q-learning. Machine Learning,
22:283-290, 1996.

[15] Smart, D. W., and Kaelbling, L., P. Making
Reinforcement Learning Work on Real-Robots.
Research Abstract, Artificial Intelligence
Laboratory, Massachusetts Institute of
Technology, 2000.

[16] Smart, D. W., and Kaelbling, L., P. Practical
Reinforcement Learning in Continuous Spaces.
In Proceedings of the Sixteenth International
Conference on Machine Learning, 2000.

[17] The Handy Board. ttp://www.handyboard.com.
[18] The MIT Programmable Brick Project.

http://el.www.media.mit.edu/groups/el/-
projects/programmable-brick/.

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 305

