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Abstract: - Autonomous learning robots have the advantage over manually programmed robots in that they are 
able to adapt to varying conditions, both internal to the robot (e.g., energy levels) as well as external 
environmental conditions (e.g. obstacles, light). In this project, there were analized the possibilities to 
implement a robot that learns how avoid obstacle using online self-adaptation. Initially it was sudied and 
implemented a robot that explores an unknown path, using touch sensors and an obstacol detector to find its 
way during the exploration. Finally it was implemented a genetic algorithm on the robot and experimented 
with using genetic algorithm as a form of robot learning. The robot was built using the Lego RCX. 
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1 Introduction 
The goal for real-time mobile robots is to travel 
while avoiding obstacles in a navigation 
environment. Autonomous navigation allows robots 
to plan their path without the need for human 
intervention. The pathplanning problem has been 
shown to be difficult, thus this problem is often 
solved using heuristic optimization methods such as 
genetic algorithms. An important part of the genetic 
algorithm solution is the structure of the genotype 
that represents paths in the navigation environment. 
The genotype must represent a valid path, but still 
be simple to process by the genetic algorithm in 
order to reduce computational requirements. 
Unfortunately, many contemporary genetic path-
planning algorithms use complex structures that 
require a significant amount of processing, which 
can affect the real-time response of the robot. 
Mobile robots are desirable for operations such as 
bomb disposal or hazardous material management, 
which would be potentially dangerous for humans. 
An important task for the robot is autonomous 
navigation, where the robot travels between a 
starting point and a target point without the need for 
human intervention. While basic information may be 
available to the robot about the navigation area 
boundaries, unknown obstacles may exist within the 
navigation area. This is called an uncertain 
environment: the robot must be able to maneuver 
around these obstacles in order to reach its target 
point. The world space refers to the physical space 
in which robots and obstacles exist - the free space 
is the subset of the world space that is not occupied 

by obstacles. A path between the starting and target 
points that avoids collisions with obstacles is said to 
be feasible - this is a path that lies within free space. 
Thus, robot navigation methods need to solve the 
path-planning problem, which is to generate a 
feasible path and optimize this path with respect to 
certain criteria. 
Applying learning algorithms such as machine 
learning and reinforcement learning to real physical 
robots is an area of active research in embodied 
intelligence. [15, 16]  Autonomous, online learning 
robots possess the ability to operate in complex, 
dynamic environments through training and 
instruction to improve the robots’ connection 
between its perception and action. These learning 
techniques are often superior to conventional 
programming because it is often difficult to design a 
robot that caters to all the variables in the real 
physical world.  
Another application of autonomous learning robots 
is in collaborative multi-robot environments.[7] It 
was shown that the complex emergent behaviors of 
insect colonies such as division of labor and self- 
organization are results of interaction of individuals 
with simple behaviors and learning capabilities. 
Individual autonomous, learning robots form the 
basis for collaborative robot research.[1, 5] 
In this project, it was implemented an autonomous, 
learning robot that performs exploration of the 
environment and learns how to avoid obstacle 
effectively. In other words, it was integrated sensor 
learning with robot control and implemented it on a 
real robot. The robot’s controller is implemented 
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with the subsumption architecture that allows the 
robot’s various behaviors (exploration, obstacle 
avoidance, collision resolution, etc.) to interact in a 
hierarchical manner.[3] 
Subsumption architecture is a way of decomposing 
complicated intelligent behaviour into many 
"simple" behaviour modules, which are in turn 
organized into layers. Each layer implements a 
particular goal of the agent, and higher layers are 
increasingly more abstract. Each layer's goal 
subsumes that of the underlying layers, e.g. the 
decision to move forward by the eat-food layer takes 
into account the decision of the lowest obstacle-
avoidance layer. 
For example, a robot's lowest layer could be "avoid 
an object", on top of it would be the layer "wander 
around", which in turn lies under "explore the 
world". The top layer in such a case could be "create 
a map", which is the ultimate goal. Each of these 
horizontal layers accesses all of the sensor data and 
generates actions for the actuators — the main 
advantage is that separate tasks can suppress (or 
overrule) inputs or inhibit outputs. This way, the 
lowest layers can work like fast-adapting 
mechanisms (reflexes), while the higher layers 
control the main direction to be taken in order to 
achieve the overall goal. Feedback is given mainly 
through the environment.[14] 
In our implementation of the obstacle avoidance 
behavior in the robot, the threshold used by the 
proximity sensor for obstacle detection can vary 
according to the robot’s speed, battery power and 
other environmental conditions. Through online 
self-adaptation, the robot will learn to adjust this 
parameter according to its own physical state and its 
surrounding environment.  
Although self-adaptation and robot learning does 
provide us with a more robust design, programming 
a robot controller and fine-tuning its parameters are 
tedious and time-consuming tasks. The final phase 
of our project involves the implementation of 
genetic algorithms to evolve an obstacle avoiding 
robot. In other words, we utilize genetic algorithms 
as a form of robotic learning. 
 
 
2. Robotic Control 
 
2.1 Deliberative Architectures 
Deliberative control takes into consideration all of 
the available sensory information and amalgamates 
them with all the controller’s internal “knowledge” 
to create a plan of action. A symbolic model of the 
world is explicitly represented and decisions are 

made based on logical reasoning. The control 
searches through all the possible actions plans until 
it finds a suitable one. This search sequence can take 
a long time and is hence not suitable in situations 
where the robots are expected to react quickly. 
Furthermore, there is often a problem in translating 
the real physical world into an accurate and 
sufficient symbolic representation for the robot to 
make meaningful decisions 
 
 
2.2 Reactive Architectures 
In sharp contrast to deliberative architectures are 
reactive architectures, where the perception is tied 
closely to the effector action. The architecture does 
not entail any kind of symbolic world model and 
does not use complex reasoning. The reactive 
control is essentially a reflex mechanism where 
stimulus-response pairs govern actions. The main 
advantage of robots with reactive control is that they 
respond quickly to a changing environment where 
no a priori information is available. The system 
requires small amount of memory and does not 
compute or store representations of the world. The 
inability to learn over time is perhaps is main 
drawback of reactive architectures.[10] 
 
2.3 Programming Environments 
To provide means for controlling of the Mindstorms 
robot that will be deployed within the RCX is a 
central assignment of this project. How will we 
implement programs that run on the RCX and what 
programming environment do we employ for this 
task? 
 
2.3.1 Rcx Code 
The first thing that comes to mind is to use RCX 
Code, the Mindstorms SDK, which is part of every 
robotics kit. Rcx Code is a proprietary graphical 
software developer’s kit that is targeted at an 
audience not experienced in programming. 
Programs written with RCX Code are compiled into 
a sequence of opcodes and are then uploaded to the 
RCX via infrared. There are several disadvantages 
of that system though, the most significant ones 
being the following: unsatisfactory level of access to 
the internals of the RCX, no support of 
communication with the PC (upload only) and no 
way to program multi-threaded applications. Last 
but not least, one soon gets tired of assembling 
programs from graphical ”command bricks” using 
the mouse. 
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2.3.2 Alternative RCX Programming 
 
Within several weeks of the first release of 
Mindstorms, the hardware internals of the RCX 
were reverse engineered and made available 
publicly to the interested. A few months later, the 
open source community had produced a series of 
alternative ways to program the RCX, sometimes 
along with alternative firmwares. The most 
important of those are: 
BrickOS, a C-based firmware which allows to write 
robot programs in standard C, using the standard 
GNU compiler tools. BrickOS gives complete low-
level access to all of the RCX’s internals. It is used 
mainly by system programmers who desire to take 
advantage of the last bit on the RCX. 
NQC, a high level language with a C-like syntax. 
Comes with a compiler to produce opcode programs 
for the original LEGO firmware. NQC is the best 
established alternative programming system for the 
RCX. It is powerful yet easy to learn and not as 
complex as the original C-language. 
LeJOS, a small Java Virtual Machine (JVM) 
implementation that runs on the RCX. This 
firmware gives users the chance to write control 
programs for robots in pure Java and comes with a 
fairly large API. LeJOS also includes a 
communications package that makes it very easy to 
establish a stream-based communication between 
PC and RCX. 
Each of those high-level programming language 
implementations gives access to all of the RCX 
hardware and allows to write complex programs for 
the Hitachi 8300 micro controller. And since the 
purpose of this project is to analize the posibilities of 
development in this field there will be studied both 
the LeJOS, in the first part, NQC for the enhanced 
exploring robot and the BrickOS in the last 
part.[9,10] 
 
LeJOS 
LeJOS was originally conceived as TiniVM by Jose 
Solarzano who was challenged by the task of 
implementing a Java virtual machine for the RCX 
platform. The resulting interpreter had a size of 
about 10 kB which left about 18 kB RAM for Java 
programs and o®ered the following features (among 
others): Java on the RCX, preemptive threads, 
arrays, recursion, synchronization and exceptions. 
After the stable release of TinyVM the e®ort of 
completing and extending TinyVM was continued 
by other open source developers as the LeJOS 
project. The interpreter grew in size up to about 17 
kB, almost inverting the ratio of program memory 
vs. firmware size.[10] 

 
Tools 
The LeJOS distribution comprises of a linker that 
produces a binary file from class files and a loader 
that performs the upload of this binary file to the 
RCX. An uploaded binary file is copied verbatim 
into memory on the H8300 and executed as soon as 
the user presses the ON button on the RCX brick.  
 
NQC 
NQC stands for Not Quite C, and is a language for 
programming several LEGO MINDSTORMS 
products. Some of the NQC features depend on 
which MINDSTORMS product you are using. This 
product is referred to as the target for NQC. 
Presently, NQC supports five different targets: 
RCX, RCX2 (an RCX running 2.0 firmware), 
CyberMaster, Scout, and Spybotics. 
All of the targets have a bytecode interpreter 
(provided by LEGO) which can be used to execute 
programs. The NQC compiler translates a source 
program into LEGO bytecodes, which can then be 
executed on the target itself. Although the 
preprocessor and control structures of NQC are very 
similar to C, NQC is not a general purpose language 
- there are many restrictions that stem from 
limitations of the LEGO bytecode interpreter. 
 
Types and Modes RCX 
The sensor ports on the RCX are capable of 
interfacing to a variety of different sensors (other 
targets don't support configurable sensor types). It is 
up to the program to tell the RCX what kind of 
sensor is attached to each port. A sensor's type may 
be configured by calling SetSensorType. . There are 
four sensor types, each corresponding to a specific 
LEGO sensor. A fifth type 
(SENSOR_TYPE_NONE) can be used for reading 
the raw values of generic passive sensors. In 
general, a program should configure the type to 
match the actual sensor. If a sensor port is 
configured as the wrong type, the RCX may not be 
able to read it accurately. 
 
SetSensor(SENSOR_1, SENSOR_TOUCH); // a 
touch sensor 
SetSensor(SENSOR_3, SENSOR_TOUCH); // a 
touch sensor 
SetSensor(SENSOR_2, SENSOR_LIGHT); // a light 
sensor 
SetSensorMode(SENSOR_2, 
SENSOR_MODE_RAW); // raw value from 0 to 
1023 
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Navigation Implementation in Lejos 
The RCX has a send message command that 
activates the IR port.  To keep flashing the IR light 
while driving about, the rovers must a send message 
a couple of times each second. It doesn’t matter 
what message we send, 0 or 255 ,  we have no 
reason to believe that it matters. 
To detect reflecting obstacles we have to look for 
rapid changes in the light sensor reading. The best 
way to do this,  is to sample the sensor quite often 
and compare two and two readings. If the difference 
between them is more than a set threshold  we count 
that as an impulse _ the proximity detector has been 
tripped. This is very reliable, and experiment prove 
it detects almost anything from white walls to black 
boots or transparent soda bottles. And putting a 
small roof over the light-sensor to shield it from 
overhead light will even  enhance the working range 
of the sensor a great deal. 
This idea is implemented in a proximity library. In 
this library one small "driver task" periodically 
activate the IR transmitter and another small "driver 
task constantly polls the light sensor and checks for 
changes larger than some calibrated threshold value. 
If it finds such value it increases the global variable 
ProximityCounter. [9,10,12] 
Below we have the run method of the 
ProximityDetector Thread.  We first colect the value 
read by the light sensor, and then have the 
transciever send a packet of data and  after a shor 
wait, we read the current value of the light sensor 
indication and compare it to our old value of light 
intensity. If the difference has become grater than 
the predefined proximity threshold, the listeners will 
be notified that an obstacle has been detected, and 
perform the coresponding actions for avoiding it. 
 
public void run() { 
      int oldValue; 
      int newValue; 
      // loop 
      while(true) { 
       // The old value read by the light sensor. 
         oldValue = Sensor.S2.readValue(); 
         // IR trasciever send packet. 
         Serial.sendPacket(packet, 0, 1); 
         try { 
          Thread.sleep(5); 
         }catch(Exception e){} 
         // Read new light sensor value. 
         newValue = Sensor.S2.readValue(); 
         // Perform differencing  
         int diff = Math.abs(oldValue - newValue); 
         LCD.showNumber(diff); 
         if(diff > proximityThreshold) { 

            notifyListeners(diff); 
         } 
         try{Thread.sleep(160);}catch(Exception e){} 
      } 
   } 
 
2.4 Learning 
The robot learning problem is to design a robot so 
that it improves its performance through experience. 
To be precise, we must specify what performance 
and what experience are. Suppose the robot’s 
performance is to be evaluated in terms of its ability 
to achieve some set of goals G. More precisely, 
suppose each goal is of the form X → Y : R  where X 
and Y are both conditions representing a set of 
possible states and where R is some real valued 
reward. The goal X → Y : R  is interpreted as if the 
robot finds itself in a state satisfying condition X 
then the goal of reaching a state satisfying condition 
Y becomes active, for which a reward R is received. 
For example_ the goal of recharging the battery 
when it is low can be represented in this way, by 
setting X to the sensory input “battery level is low”, 
Y to the sensory input robot senses that it is 
electrically connected to the battery recharger and R 
to 100. Given a set of such goals we can define a 
quantitative measure of robot performance such as 
the proportion of times that the robot successfully 
achieves condition Y given that condition X has 
been encountered, or the sum of the rewards it 
receives over time. If we wish, we might further 
elaborate our measure to include the cost or delay of 
the actions leading from condition X to condition Y. 
 
2.4.1 What and How to Learn 
What and how should we design robots to learn. 
Two important dimensions along which approaches 
vary are the exact functions to be learned and  the 
nature of the training information available. Here we 
consider a few possible learning approaches, then 
summarise some of the more significant dimensions 
of the space of possible approaches. 
The most direct way to attack the robot learning 
problem is to learn the control function f directly 
from training examples corresponding to input-
output pairs of f. Recall that f is a function of the 
form f : S → A  where S is the perceived state and A 
is the chosen control action.[7, 15]  
In some cases, training examples of the function f 
might not be directly available. Consider for 
example a robot with no human trainer. with only 
the ability to determine when the goals in its set G 
are satisfied and what reward is associated with 
achieving that goal. For example, in a navigation 
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task in which an initially invisible goal location is to 
be reached and in which the robot cannot exploit any 
gradients present in the environment for navigation, 
a sequence of many actions is needed before the task 
is accomplished. However if it has no external 
trainer to suggest the correct action as each 
intermediate state, its only training information will 
be the delayed reward it eventually achieves when 
the goal is satisfied. In this case it is not possible to 
learn the function f directly because no input-output 
pairs of f are available. An alternative approach that 
has been used successfully in this case is to learn a 
diferent.[16] 
 
 
3.  Experiment & Results  
3.1 Evolving The Robot Controller Using 
Genetic Algorithms 
In this section, we describe the final piece of our 
implementation - genetic algorithm on the robot 
controller in an attempt to evolve the obstacle 
avoidance behavior. We make use of 8 state FSAs to 
represent the controller of the robot. The actions 
Forward, Left, Right and Reverse are encoded (in 
binary) as 00, 01, 10 and 11 respectively. The 
robot’s genotype (controller) is obtained by first 
ordering the Old State, Input pairs lexicographically. 
The robot’s genotype is obtained by concatenating 
the corresponding Next State, Action . The Input 
value is 1 if the robot’s proximity sensor senses an 
obstacle, 0 otherwise. 
 
Parameter                                  Value 
Population Size                                        5 
Generations                                       10 
Probability of Choosing Individual 50%  
Steps/Iteration                                      100 
Probability of Mutation                          1%  
Proportion of Population Mutated 40%  
Crossover Points               1 
Proportion of Population Crossover 40% 
 
Table 1: Parameters for Genetic Algorithm 
 
Table 1 shows the list of parameters used in the 
genetic algorithm that we implemented on the robot 
.The robot is simulated for 100 exploration time 
steps for each controller i.e., the Explore AFSM is 
executed 100 times. At each simulation, the robot is 
initialized with an initial fitness of 100. If it hits an 
obstacle, the robot’s fitness is decreased by 1. If the 
robot moves forward, its fitness is increased by 1. 
Otherwise, its fitness value remains the same. The 
robot stops after each simulation and will start the 

next simulation upon user input (via the RCX’s 
PRGM button i.e., we overwrote the function of the 
PRGM button). 
 
 
3.2 Evolving the Robot’s Controller 
In building the robot, we realize that fine tuning the 
robot’s parameters such as threshold values takes a 
lot of time and effort and gets increasingly difficult 
when the robot’s controller becomes more complex. 
We further experimented with genetic algorithms in 
an attempt to evolve a robot controller to avoid 
obstacles. This experiment was not complete but 
serves as a baseline for using genetic algorithms on 
our robot implementation. 
We implemented a genetic algorithm on top of the 
the simple version of the robot controller. The input 
to the controller is a binary value that tells if there is 
an obstacle in front of the robot. We overwrite the 
RCX’s PRGM button such that the robot will stop 
after each simulation and this button will have to be 
pushed for the robot to start the next simulation (of 
the next individual). The robot is initialized with a 
fitness of 100 and this value is decreased when the 
robot collides with an obstacle. The robot’s fitness is 
incremented only when it moves forward; otherwise, 
the robot could keep turning in circles and still 
achieve optimal fitness. 
 
4 Conclusion 
 
Our experiments reinforced our knowledge that 
building a physical robot that operates in the real 
world environment is very different from simulation 
e.g., of Braitenberg vehicles. There are a variety of 
reasons for this phenomenon, including both 
external and internal (to the robot). External factors 
include: 
 Concurrent tasks: Most robot implementation have 
some form of concurrent tasks to control the various 
behaviors of the robots. Too many concurrent tasks 
proved complex and difficult to get right. 
Furthermore, since we have only a single processor 
that implements a time-slicing scheme among the 
different tasks and the robot is required to react 
quickly at times, timing became a major issue i.e., 
insufficient time window to be shared among all the 
different tasks. 
 Software abstraction: Software abstraction makes 
programming a much easier task. The problem with 
software abstraction is that it tends to abstract away 
some important timing and synchronization issues in 
programming the robot. We found that LegOS is a 
very powerful environment, which allows you to 
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program in the standard ANSI C/C++ and utilize all 
32 KB of RAM rather than limiting us to the number 
of variables as defined by the microcontroller. There 
are also a couple of pitfalls in using legOS. Firstly, 
legOS has a priority inversion problem that we have 
to solve by implementing our own synchronization 
primitives. Secondly, legOS’s floating point 
calculation takes approximately twice as integer 
operations. We took care not to use floating point 
numbers in our legOS program. 
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