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Abstract: - For Safety related systems the indication of the average probability of failure on demand (PFD) taking into 
consideration of he Proof Test interval is one possibility to compare different systems. In this paper we intend to derive 
the average PFD for a 1oo1 system taking into consideration as well the Proof Test as a Partial Stroke Test (PST). 
Thereby we specify a unique mathematic function without a helping probability band. Doing so, we get additional 
correlations between reduction of PFD and the diagnostic coverage factor and also of the PFD value between a system 
without PST and a system with PST. Finally we present an approximation in order to calculate the PFD value, if the 
ratio between the PST interval and the Proof Test interval is very small. 
 
Key-Words: - 1oo1-System, Probability of failure on demand, Partial-Stroke-Test, Proof-Test, Relative probability of 
failure reduction, Diagnostic coverage factor 
 
1   Introduction 
For each developer of safety related systems it is a 
challenge to extend the Proof Test interval for a safety 
related application and to get an identical or even better a 
smaller Probability of Failure on Demand (PFD) at the 
same time. In the standard IEC/EN 61508 a Proof Test is 
defined as a “periodic test performed to detect failures in 
a safety-related system so that, if necessary, the system 
can be restored to an “as new” condition or as close as 
practical to this condition” [1]. One possibility to extend 
the Proof Test interval is the use of Partial Stroke Test 
(PST). These tests may be executed between two Proof 
Tests either manually or automatically, only sometimes 
or very frequently. In the scientific literature there are 
only few approaches to describe mathematically the PFD 
of Safety Related Systems using the PST [2], [3], [4]. 
The parameters shown in Table 1 are necessary for the 
equations in this paper. 
 

Table 1: Parameters 

avgPFD  Probability of failure on demand, average 

DUλ  Rate for dangerous, undetectable failures 

PSTDC  Diagnostic coverage factor for a PST 

PSTt  Time of the PST 

PTt  Time of the proof-test 

 
 

In [2] the average PFD, PFDavg1(t), of a system with PST 
according to eq. (1) is calculated. 
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In [3] and [4] it is additionally kept in mind that the PFD 
value after a successful PST only depends on such 
failures that are not detected by the PST. Therefore, two 
equations are necessary to mathematically describe this 
issue, eq. (2) and (3). 

)()( 1.,1 tPFDtPFD avgPSTwavg =  (2) 

PTDUPSTPSTaavg tDCtPFD ⋅⋅−⋅= λ)1(
2
1)(.,1  (3) 

So the average PFD can only be described by an average 
band of probability, Fig. 1. 
The calculation of a PFD for a 1oo1 system without a 
PST is described in e. g. [4] - [8].  
For a 1oo1 system with PST in this paper we specify a 
unique mathematic function without a helping 
probability band. Doing so, we get additional 
correlations between reduction of PFD and the 
diagnostic coverage factor and also of the PFD value 
between a system without PST and a system with PST.  
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Fig. 1: PFDavg1 with DUλ  = 7*10-8 1/h,  = 
3 years,  = 12 months,  = 60 % 
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2   1oo1-System with PST, PFDavg3,w. PST
With the method of calculation presented here, which as 
far we know, hasn’t been considered yet, one can give a 
constant value as the average value for the PFD value. 
The principle is, that at first an average value will be 
appraised for each PST interval following the well 
known method 
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Finally the average value will be generated via all 
appraised single average value. 
The PFD value between two PSTs will be appraised 
using the following equation and will occur in 
sections.
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The average value for the functions defined in sections 
will be calculated with eq. (4). The result is: 
For the interval : PST.tt 10 <≤

PST.DUavg tPFD 13 2
1

⋅⋅= λ
 (5) 
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⎟
⎠
⎞

⎜
⎝
⎛ +⋅⋅−⋅⋅=

−⋅⋅−

−⋅⋅⋅=

PSTPSTDU
PST

PST
DU

PSTPSTDUPST

PSTPST
PST

DUavg

DCt
t
t

ttDC

tt
t

PFD

2
1

2
1

)(

)(1
2
1

.1
.1

2
.2

.1.2

2
.1

2
.2

.1
3

λλ

λ

λ

 (6) 

For the interval PST.PST. ttt 32 <≤ : 
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For the following PST interval, the corresponding eq. (7) 
will be used.  
For the last interval , which ends with 
the Proof-Test time t

PTPSTlast ttt <≤

PT: 
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Once all PFDavg3 have been appraised in sections, the 
PFDavg3, w.PST will be defined via the average value of all 
PFDavg3: 

∑⋅= 3.,3 PSTN
1

avgPSTwavg PFD
ofumber

PFD  (9) 

With the same parameters as used for Fig. 1 we get the 
PFDavg3,w.PST value and the trajectory as shown in Fig. 2. 
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Fig. 2: PFDavg3 with DUλ  = 7*10-8 1/h,  = 
3 years,  = 12 months,  = 60 % 
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3   Coherence between PFDw.PST and 
PFDavg3, w.PST
The approach presented up to now to appraise the 
PFDavg3, w.PST consists at first to appraise the single 
PFDavg value between two PSTs and then to calculate 
the average value via all PFDavg.  
Underneath, it should be attested, as far as we know for 
the first time, that the coherence between PFD und 
PFDavg3, w.PST exists. Thereby it will be provided that the 
intervals between two PSTs are identical, though this is 
not necessary, as one can easily demonstrate, e. g. with 
the help of the Riemann’s integrable criteria [9]. This 
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attests that each defined and limited function f(x) in 
[a, b] is than exactly integrated via [a, b], if this one has 
an endless number of discontinuity on [a, b]. Than the 
integral will be calculated via the function f(x) through 
the separation of the interval [a, b] into endless small 
intervals [9]. 
Generally the following equation counts for the PFDavg, 
successively written with PFDpart av, in n-ten PST-inter-
val (generalization of eq. (10) 
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with 

PST.PST.nPST).n( ttt 11 −=−  (11) 
follows 
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whereas  

PSTDUPST tDCA .12
1
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is. 
In order to calculate the average value (PFDavg3, w.PST) via 
all PFDpart av, it will be provided that n intervals exist. 
Thereby the following equation should count, what 
would otherwise be a limit of the demonstration: 

 nk K1=
PTPST.n tt = ,  

It means, that the time of the n. PSTs coincides with the 
time of the Proof Test, and 

0.0 =PSTt , the time of the process to be defined. 
Firstly the single PFDpart av of all n intervals will be 
calculated. 

With PST.k tkt 1⋅=  (14) 
it results 

( )
( )

PST.DU

PST.DUPST

PST.DUPST

PST.DUPSTavpart

t

tDC

tDC

AtDCPFD:k

1

1

1

1

2
1

2
1

11

111

⋅⋅=

⋅⋅⎟
⎠
⎞

⎜
⎝
⎛ −

+⋅⋅⋅−=

+⋅⋅⋅−==

λ

λ

λ

λ

 

Corresponds to eq. (5)! 
( ) AtDCPFD:k PST.DUPSTavpart +⋅⋅⋅−== 1212 λ  
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This equation is the same as eq. (8) for the PST-interval 
of PTPSTlast ttt <≤ , as shown in the following 
calculation: 
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with eq. (12) counts for 
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and with PTPST.n tt =  and  results 
for 

PSTlastPSTPSTn ttt =− .1.
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which is the same as in eq. (8). 
When the sum is made via all PFDpart av, i. e from k = 1 
up to k = n, so results: 
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To calculate the average value of the PFDavg3, w.PST from 
eq. (15), this equation must still be divided over the 
amount of PST intervals: 
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With  and eq. (13) PSTPTPST tttn .1.1)1( +=⋅+
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Compare this equation with 
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to time t = tPT: 
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so one finds, that counts: 
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4   Coherence between the relative 
probability of failure reduction B1rel and 
the DCPST factor 
Assuming that all PST intervals have the same length, 
i. e. PSTPSTn tt .1. = , and so further the inequation 

PTPST tt <<.1 counts, a coherence between the relative 
probability of failure reduction BB1rel and the DCPST factor 
should be appraised in the following. For the probability 
of failure reduction B1B  counts at time tPT of the Proof 
Test the equation, see [3] (PFDwo.PST: PFD value for a 
system without a PST; PFDw.PST: PFD value for a system 
with a PST): 
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A relative probability of failure reduction BB1rel can 
therefore at time tPT be defined as follow: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅=

⋅

−⋅⋅
=

=

=−=
=

=
=

==

PT

PST
PST

PTDU

PSTPTPSTDU

PTPSTo

PTPSTwPTPSTwo

PTPSTwo

PT
PTrel

t
t

DC

t
ttDC

ttPFD
ttPFDttPFD

ttPFD
ttB

ttB

.1

.1

.

..

.

1
1

1

)(

)(
)()(

)(
)(

)(

λ
λ

 (21) 
Provided that PTPST. tt <<1  one obtains the approximation 

. (22) PSTPTrel DCttB = )(1 ≈
If one dissolves eq. (21) according to )(. PTPSTw ttPFD =  
this would mean for practical application, provided that 

PTPST. tt <<1  counts, the following: 
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It means that the probability of failure of a system 
with PST at time PTtt =  depends only, provided 
that, PTPST. tt <<1  counts, on the probability of failure of 
a system without PST and the DCPST factor! 
To underline the validity of this statement, the results 
achieved in this paper will be compared with each other. 
In a first work following parameters are given. 
 

hJahret PT 262803 ==  and 
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The chosen failure rate is  

hPT,DUD
1107 8−⋅== λλ . 

The results for the relative probability of failure 
reduction BB1rel  according to the eq. (21) are shown in 

. Table 2
 

Table 2: Table of value for the rel. probability 
of failure reduction  with  relB1 yearstPT 3=

4380 50,00% 58,33% 66,67% 75,00%
8760 40,00% 46,67% 53,33% 60,00%

13140 30,00% 35,00% 40,00% 45,00%

90%
       DC PST      

t 1.PST 60% 70% 80%

 
 
 
To check the validity of eq. (23), the PFD value for the 
exact value for  according to eq. (18) 
as well as the one from eq. (23) calculated value and the 
relative difference of both values are given in 
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Table 3: Table of value for the rel. probability 
of failure reduction  with  relB1 yearstPT 3=

DC PST

t 1.PST
exac. PFD app. PFD rel. Δ in % exac. PFD app. PFD rel. Δ in %

4380 9,20E-04 7,36E-04 20,00 7,67E-04 5,52E-04 28,00
8760 1,10E-03 7,36E-04 33,33 9,81E-04 5,52E-04 43,75

13140 1,29E-03 7,36E-04 42,86 1,20E-03 5,52E-04 53,85
DC PST

t 1.PST
exac. PFD app. PFD rel. Δ in % exac. PFD app. PFD rel. Δ in %

4380 6,13E-04 3,68E-04 40,00 4,60E-04 1,84E-04 60,00
8760 8,58E-04 3,68E-04 57,14 7,63E-04 1,84E-04 75,00

13140 1,10E-03 3,68E-04 66,67 1,01E-03 1,84E-04 81,82

60% 70%

80% 90%

 
As one can see on the values in Table 3 a ratio 

16660
26280
43801 ,

h
h

t
t

PT

PST. ==  is not satisfying to become an 

adequate small difference between the exact PFD and 
the approximated PFD. In this case it means that the 
PFD value must be calculated with the exact formula for 
a system with PST. 

The result would be different if one changes the 
parameters as shown here: 
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h
,PT,DUD

11083 7−⋅== λλ . 

 
In Table 4 we can see the result for the relative 
probability of failure reduction BB1rel  with these 
parameter values. It may be assessed that the values of 
B1relB  is nearly equal to the chosen DCPST factor.  
 

Table 4: Table of value for the rel. Failure 
probability reduction  with  relB1 yeartPT 1=

24 49,86% 64,82% 74,79% 84,77%
48 49,73% 64,64% 74,59% 84,54%

168 49,04% 63,75% 73,56% 83,37%

85%

       DC PST  

t 1.PST 50% 65% 75%

 
 
To check the validity of eq. (23), the PFD value for the 
exact value of  according to eq. (18) 
and the ones from eq. (23) calculated values as well as 
the relative difference of both values are given in 
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As one can see on the values in Table 5, a ratio 

0201 ,
t

t

PT

PST. <  is satisfying to become an adequate small 

difference between the exact PFD and the approximated 
PFD. 
It should be observed that the approximation is optimally 
adapted when the DCPST factor is also small. It means in 
this case that it is easier to calculate the PFD-Value for a 
System with PST using the approximation formula. 
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Table 5: Table of value for the rel. failure 
probability reduction  with t  relB1 yearPT 1=

DC PST

t 1.PST

exac. PFD app. PFD
rel. Δ 
in % exac. PFD app. PFD

rel. Δ 
in %

24 1,67E-03 1,66E-03 0,27 1,17E-03 1,17E-03 0,51
48 1,68E-03 1,66E-03 0,82 1,18E-03 1,17E-03 1,00

168 1,69E-03 1,66E-03 1,89 1,20E-03 1,17E-03 2,92
DC PST

t 1.PST

exac. PFD app. PFD
rel. Δ 
in % exac. PFD app. PFD

rel. Δ 
in %

24 8,39E-04 8,32E-04 0,82 5,07E-04 4,99E-04 1,53
48 8,48E-04 8,32E-04 1,88 5,16E-04 4,99E-04 3,27

168 8,78E-04 8,32E-04 5,19 5,52E-04 4,99E-04 9,58

75% 85%

50% 65%

 
 
 
5   Coherence between PFDwo.PST and 
PFDavg3, w.PST
From both previous chapters 3 and 4 a light coherence 
between the PFD values PFDwo.PST, i. e. for a system 
without PST, and the average PFD value, PFDavg3, w.PST, 
i. e. for a System with PST, can be established. Provided 
that, all PST intervals have the same length, i. e. 

, and that the inequation PST.PST.n tt 1= PTPST. tt <<1  
counts. It results then from eq. (19) and (23) 

( )PSTPTPSTwo

PTPSTwPSTwavg

DCttPFD

ttPFDPFD

−⋅=⋅=

=⋅=

1)(
2
1

)(
2
1

.

..,3

 (24) 
To check the validity of this equation the same 
parameters as mentioned before are used again: 

hJahrt PT 87601 ==  

years
365
7168

years
365

248

years
365
1241

==

==

==

h//

h//

ht PST.

 

The chosen failure rate is  

h
,PT,DUD

11083 7−⋅== λλ . 

In Table 6 the PFD-values with exact values for 
 according to eq. (5) up to eq. (9), in the 

eq. (25) are presented generally,  
mittel,avgPFD 3
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 (25) 
and the ones from eq. (24) calculated values and the 
relative difference of both values is given.  
 

Table 6: Table of comparison to the exactly 
PFD value and the approximated PFD values 
with yeartPT 1=  

DC PST

t 1.PST

exac. 
PFDavg3,w

app. 
PFDavg3,w

rel. Δ 
in %

exac. 
PFDavg3,w

app. 
PFDavg3,w

rel. Δ in 
%

24 8,34E-04 8,32E-04 0,27 5,86E-04 5,83E-04 0,51
48 8,39E-04 8,32E-04 0,82 5,90E-04 5,83E-04 1,28
168 8,46E-04 8,32E-04 1,62 6,02E-04 5,83E-04 3,18

DC PST

t 1.PST

exac. 
PFDavg3,w

app. 
PFDavg3,w

rel. Δ 
in %

exac. 
PFDavg3,w

app. 
PFDavg3,w

rel. Δ in 
%

24 4,20E-04 4,16E-04 0,82 2,54E-04 2,50E-04 1,53
48 4,24E-04 4,16E-04 1,88 2,58E-04 2,50E-04 3,27
168 4,39E-04 4,16E-04 5,19 2,76E-04 2,50E-04 9,58

75% 85%

50% 65%

 
 
As one can see on the values in Table 6, a ratio of 

02,0.1 <
PT

PST

t
t

 is satisfying to become an adequate small 

difference between the exact and the approximate 
PFDavg3,w.PST value. It should be observed that the 
approximation is optimally adapted when the DCPST 
factor is also small. It means in this case, that it is very 
easy to calculate the PFD value for a system with PST 
using the approximation formula eq. (24). 
 
 
6   Conclusion 
In this paper the mathematical coherence between the 
PFD value of a 1oo1 system without PST and the 
average PFD value of a 1oo1 system with PST was 
presented. If the relative probability of failure reduction 
is near the DCPST factors or the ratio between the PST 
interval and the Proof Test interval is sufficiently small, 
then for this calculation we can use a simple 
approximation, see eq. (24).  
Advanced studies may deal with other architecture 
models like 1oo2 or 2oo3 systems. We assume similar 
coherence between the different PFD parameters as 
examined in this paper. 
 
 
 

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007     21



References: 
[1] IEC 61508, International Standard 61508: 

Functional safety of electri-
cal/electronic/programmable electronic safety-
related systems, Geneva, International 
Electrotechnical Commission, 2000. 

[2] Summers, A. E., Partial-Stroke Testing of Block 
Valves, Control Engineering, Nov. 2000. 

[3] Börcsök, J., Machmur, D., Influence of partial 
stroke tests and diagnostic measures of the proof 
test interval, ESREL 2007, Risk, Reliability and 
Societal Safety, pp. 345-352. 

[4] Börcsök, J., Machmur, D., Tsoozol, P., 
Examination of repetitive proof-tests for safety 
related systems, ESREL 2007, Risk, Reliability 
and Societal Safety, pp. 353-359. 

[5] J. Börcsök, Elektronische Sicherheitssysteme, 
Hüthig, 2007. 

[6] J. Börcsök, Elektronic Safety Systems, Hüthig, 
2004. 

[7] J. Börcsök, Functional Safety, Hüthig, 2007. 
[8] Börcsök, J., Holub, P., Schwarz, M. H., Dang 

Pham, N. T., Calculation of PFD-values for a 
safety related system, ESREL 2007, Risk, 
Reliability and Societal Safety, pp. 339-344. 

[9] Bronstein, I. N. Semendjajew, K. A., Taschen-
buch der Mathematik, Harri Deutsch, Thun und 
Frankfurt (Main), 1984. 

 
 

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007     22


