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Abstract: - For Safety related systems the indication of the average probability of failure on demand (PFD) taking into
consideration of he Proof Test interval is one possibility to compare different systems. In this paper we intend to derive
the average PFD for a 1001 system taking into consideration as well the Proof Test as a Partial Stroke Test (PST).
Thereby we specify a unique mathematic function without a helping probability band. Doing so, we get additional
correlations between reduction of PFD and the diagnostic coverage factor and also of the PFD value between a system
without PST and a system with PST. Finally we present an approximation in order to calculate the PFD value, if the
ratio between the PST interval and the Proof Test interval is very small.
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1 Introduction

For each developer of safety related systems it is a
challenge to extend the Proof Test interval for a safety
related application and to get an identical or even better a
smaller Probability of Failure on Demand (PFD) at the
same time. In the standard IEC/EN 61508 a Proof Test is
defined as a “periodic test performed to detect failures in
a safety-related system so that, if necessary, the system
can be restored to an *“as new” condition or as close as
practical to this condition” [1]. One possibility to extend
the Proof Test interval is the use of Partial Stroke Test
(PST). These tests may be executed between two Proof
Tests either manually or automatically, only sometimes
or very frequently. In the scientific literature there are
only few approaches to describe mathematically the PFD
of Safety Related Systems using the PST [2], [3], [4].
The parameters shown in Table 1 are necessary for the
equations in this paper.

Table 1: Parameters

PFD,,, | Probability of failure on demand, average

Abu Rate for dangerous, undetectable failures
DCpqr Diagnostic coverage factor for a PST
tpsr Time of the PST

tor Time of the proof-test

In [2] the average PFD, PFDa,y(t), of a system with PST
according to eq. (1) is calculated.

1
PFDavgl (t) = E DCPST 'ﬂ’DU 'tl.PST

1 1)
+E‘(1_ DCpsr) Aoy “ter

In [3] and [4] it is additionally kept in mind that the PFD
value after a successful PST only depends on such
failures that are not detected by the PST. Therefore, two
equations are necessary to mathematically describe this
issue, eg. (2) and (3).

l:)I:Davgl,w.PST t)= PFDavgl(t) )

1
PFDavgl,a.PST (t) = E : (1_ DC PST ) : ADU : tPT (3)

So the average PFD can only be described by an average
band of probability, Fig. 1.

The calculation of a PFD for a 100l system without a
PST is described ine. g. [4] - [8].

For a 1ool system with PST in this paper we specify a
unique mathematic function without a helping
probability band. Doing so, we get additional
correlations between reduction of PFD and the
diagnostic coverage factor and also of the PFD value
between a system without PST and a system with PST.
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Fig. 1: PFDayg With Ag, =7*10° 1/h, to; =
3years, tpsr =12 months, DCps; =60 %

2 1ool-System with PST, PFDaygsw. psT
With the method of calculation presented here, which as
far we know, hasn’t been considered yet, one can give a
constant value as the average value for the PFD value.
The principle is, that at first an average value will be
appraised for each PST interval following the well
known method
b

L [f(t)dt (4)
-t
1 0 to
Finally the average value will be generated via all
appraised single average value.
The PFD value between two PSTs will be appraised

E(t)=

using the following equation and will occur in
sections.
Apy -t 0<t<t psr
Apy - t=DCpgsr - Apy -ty pst b pst SE<T; pgr
PFD =

Apy “1=DCpsr - Apy “typst Ty pst ST<Tg pgr

Apy t=DCosr - Apy lastpst  liastpst <U<tpr

The average value for the functions defined in sections
will be calculated with eq. (4). The result is:
For the interval 0 <t <t per:

1
PFDavg 3 ZE%DU 1y pst

®)
For the interval t; por <t <t, psr:
1 1 2 2
PFDavg3 = _'/1Du '_'(tz.PST —typst )
2 ty pst
- DCPST 'ﬂ“DU '(tz.PST _tl.PST)

1 typsr’ 1
:E'/lDU 2P — Aoy tpst (E"‘ DCPST)

Uy pst
(6)

For the interval t, oo <t <ty per:

2

t
PFDang :%'ADU s

tl.PST

(7)

1 st

— Apu (Et—+ DCpsr 't2.PST]
1.PST

For the following PST interval, the corresponding eq. (7)

will be used.

For the last interval t . ps <t <tpr, Which ends with

the Proof-Test time tpr:
2

1 t
PI:Davg 3= E ﬁ'DU : t oL
1.PST
2 (8)
1 st pst
—Apu | - = +DCpsr “tast pst
2 tper

Once all PFD,,; have been appraised in sections, the
PFDavgs, west Will be defined via the average value of all
PFDygs:

1
PF Davg 3, W.PST —

'S PFD 9
Number of PST 2.PFDay;s ©

With the same parameters as used for Fig. 1 we get the
PFDaygsw.pst Value and the trajectory as shown in Fig. 2.
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Fig. 2: PFDag With Ay, =7*10° 1/h, t,, =
3years, tpsy =12 months, DCps; =60 %

3 Coherence between PFD,, pst and

I:)FDavg& w.PST
The approach presented up to now to appraise the

PFDaygs, west cOnsists at first to appraise the single
PFDay value between two PSTs and then to calculate
the average value via all PFD .

Underneath, it should be attested, as far as we know for
the first time, that the coherence between PFD und
PFDavgs, west €Xists. Thereby it will be provided that the
intervals between two PSTs are identical, though this is
not necessary, as one can easily demonstrate, e. g. with
the help of the Riemann’s integrable criteria [9]. This
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attests that each defined and limited function f(x) in
[a, b] is than exactly integrated via [a, b], if this one has
an endless number of discontinuity on [a, b]. Than the
integral will be calculated via the function f(x) through
the separation of the interval [a, b] into endless small
intervals [9].

Generally the following equation counts for the PFD,y,
successively written with PFDpartay, in n-ten PST-inter-

val (generalization of eg. (10)
2

1 t
PFDpart av — _'/1DU - DEST
2 ty pst
1t 2
(n-1).PST
DU | 5° DCPST 't(n—l).PST
2 tpgr
_1 Aoy -[t 2 _t 2]
2 1 s n.pST (n-1).PST

_ﬂ“DU : DCPST -t (n-1).PST

(10)
with
t(n—l).PST =tnpst —lipst (11)
follows
1 2 2 2
PFDpart av ZE‘,[ e '[tn.PST _(tn.PST _tl.PST) ]_
1.PST
Apu - DCpsr '(tn.PST _tl.PST)
1 2
== 00 '[z'tn.PST "t pst _tl.PSTZ]_
2ty psr
/1Du 'DCPST '(tn.PST _tl.PST)
1
= /IDU st _E'ﬂou tpst — (12)
Apu - DCpgt '(tn.PST _tl.PST)
= (1_ DCopsr ) Apu “topst +
1
(DCPST _Ej'ﬂou U psr
= (1_ DCopsr ) Apu “topst + A
whereas
1
A:(DCPST _Ej'/IDU “typst (13)
is.

In order to calculate the average value (PFDaygs, w.pst) Via
all PFDgartay, it will be provided that n intervals exist.
Thereby the following equation should count, what
would otherwise be a limit of the demonstration:
k=1...n

topst =tprs

It means, that the time of the n. PSTs coincides with the
time of the Proof Test, and

t,pst = 0, the time of the process to be defined.

Firstly the single PFDyartay Of all n intervals will be
calculated.

With t, =K -t; per (14
it results
k=1: PFD a0 =(@-DCpsr ) Apy Ltypsr +A

= (1_ DCpsr )'ﬂ“DU 1ty pr +

1
(DC PST _E] “Apy “tipst

1
- E j'DU 'tl.PST
Corresponds to eg. (5)!

k=2: PFD 0 =(@—DCps )-Apy -2-tipsr +A
k=3: PFDyya = (L=DChpsr)- Aoy -3-tipsr +A
k=4: PFD a0 = (1-DCopgr )- Apy “4-typsr +A
etc... up to

K=n: PFD 0 =@~ DCpg ) Aoy - N-tpsr + A

= (l_ DCPST)' Apu “topst + A

= (1_ DCPST)' Apu “topst
1

J’{DCPST _E)'/IDU U pst
= /1DU T pst

_DCPST ' /1DU (tn.PST - t1.PST )
This equation is the same as eq. (8) for the PST-interval

N JU
2 DU  "1.PST

of tqpst St<tpr, as shown in the following
calculation:
k=n: PFD s = (1_ DCopst )‘/1Du Nty + A

= (1_ DCpgr ) Apu topst

1
[DCPST - EJ “Apy st

1

= /quu U pst _E'ﬂ’DU “tpst —

DCPST ';LDU (tn.PST _tl.PST)
with eq. (12) counts for
) 1 Apy [ 2 2]
k=n: PFD o = -7 [tapst _(tn.PST _tl.PST) -
1.PST

Aoy -DCpst - (tnpst —tipst)
and with t, o5y =tpr and t,psr — 1) psr =tigpsr results

for
_ 1 A 2 2
k=n: I:>|:Dpartav = E& [tPT _tlast PST ]
1.PST
_ﬂ’DU ’DCPST 'tlast PST

which is the same as in eg. (8).
When the sum is made via all PFDpartay, i. € from k=1
up to k = n, so results:
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ZPFDpart av = (1_ DCPST )'/’Z‘DU :
(1+2+3+4+...4n)-t,pr +N-A
n-(n+1) (15)

5 lpsT
2

= (1_ DCPST)'/lDU )

+n-A
To calculate the average value of the PFDa,ygs, west from
eg. (15), this equation must still be divided over the
amount of PST intervals:

1
PFDang, W.PST = H : z:PFDpart av

n+1
:(1_ DCPST)'/IDU u

-t + A
2 1.PST

:_'(1_ DCops; )'ﬂ’DU (N+1) -t pr +A
(16)

N

With (n+1)-t, s =tpr +1t, psr and eq. (13)

1
A:(DCPST _EJ%DU “Upst
it results

PFD L

E'(l_ DCpsr ) Aoy '(tPT +1 psr )"'

avg3, w.PST =

1
(DCPST _ZJ : lDU 'tl.PST

-(L-DCesr )- Apy -tor +

N~ N

1

1
-(L-DCpsr )+ ( DCpsr - ZH “Apy “tipst

1
(L= DChsr)- Aoy “tor +E' DCosr - Apy by psy

NP N -

'[(1_ DCPST)'/lDU “tor + DCpsr - Apy 'tl,PST]

(17
Compare this equation with
PFDW PST (t) = DCPST ’ /1DU 'tl. PST + (1_ DCPST ) : ﬂ'DU -t

= DChpsr - Ap -ty pst + (1 DCopsr)- 4p -t
= Ap [DCpsr -ty psr + (11— DCpsr)-t]

(18)

to time t = tpy:
PFDW. PST (t =tpr ) = DCPST ‘]“Du typsr +

(—DCpsr ) Apy “ter

= (1= DCpsr) - Apy tr +'

DCPST 'ﬂ'DU 't1. PST

so one finds, that counts:
1

PFDang, w.PST :E' PFDW. PST (t :tPT) (19)

4 Coherence between the relative
probability of failure reduction B, and

the DCpst factor

Assuming that all PST intervals have the same length,
I.e. t.psr =t psr, and so further the inequation
t, psr << tpr counts, a coherence between the relative

probability of failure reduction By, and the DCpsr factor
should be appraised in the following. For the probability
of failure reduction B; counts at time tpr of the Proof
Test the equation, see [3] (PFDuopst: PFD value for a
system without a PST; PFDy,pst: PFD value for a system
with a PST):

B, (t =tpr ) = PFDyy psr (t =tpr) = PFD,, psr (t=tpr )
= ZDU : DCPST '(tPT -t PST)
(20)
A relative probability of failure reduction B, can
therefore at time tpr be defined as follow:

B.(t=tpr)
By (t=tpr) = PED : PT_
wo. PST (t - tPT )

_ PFDwo. PST (t :tPT ) - PFDW. PST (t :tPT)
PFDo. PST (t :tPT)

B Apy *DCpsr - (tpr — 1y pst)

Apy “ter
t
_ DCPST .(1_ l.PST]
tpr
(21)
Provided that t, .oy <<tpr One obtains the approximation
Birei (t =tpr ) = DCpsr . (22)

If one dissolves eq. (21) according to PFD,, psr (t =tpr)

this would mean for practical application, provided that
t, pst << tpr counts, the following:

PFDW. PST (t =1lpr ) = PFDwo. PST (t =lpr ) -

Birei (t=1pr) - PFDyq psr (t=tpr)
= PFDWO. PST (t :tpT ) .

(1_ Broi (t="tpr ))
= PFD, psr (t=tpr)- (1_ DCpsr )
(23)
It means that the probability of failure of a system
with PST at time t=t,; depends only, provided
that, t, ,r <<tpy counts, on the probability of failure of

a system without PST and the DCps7 factor!

To underline the validity of this statement, the results
achieved in this paper will be compared with each other.
In a first work following parameters are given.

tpr =3 Jahre =26280 h and
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t pst =4380h=05 years
/[ =8760h=1 year
/[ =13140h =15 years
The chosen failure rate is

Ap = Aoy pr =7-108%.

The results for the relative probability of failure
reduction B, according to the eq. (21) are shown in
Table 2.

Table 2: Table of value for the rel. probability
of failure reduction B, with t,; =3 years

1rel

DCopsr
{1pst 60% 70% 80% 90%
4380 50,00% 58,33% 66,67% 75,00%
8760 40,00% 46,67% 53,33% 60,00%
13140 30,00% 35,00% 40,00% 45,00%

To check the validity of eq. (23), the PFD value for the
exact value for PFD,, ps; (t =tp;) according to eq. (18)

as well as the one from eq. (23) calculated value and the
relative difference of both values are given in Table 3.
The ratio between t, ,o; and t,; averages there

4380 h

U pst _

fort, sy = 4380h: = =0,1666
LSt to,  26280h
t
fort, py =8760h: =PST - 87600 _ 3333
' t,,  26280h
fort, ps; =13140h: Lpsr _ 13140h =05
' t,,  26280h

The result would be different if one changes the
parameters as shown here:
tpr =1Jahr =8760 h

1
t =24h=— vyears
1.PST 365 y

/[ = 48h =i years
365

/[ = 168h :L years
365

The chosen failure rate is

Ap = Aoy pr =38-107 %

In Table 4 we can see the result for the relative
probability of failure reduction B,  with these
parameter values. It may be assessed that the values of
B1re is nearly equal to the chosen DChpsy factor.

Table 4: Table of value for the rel. Failure
probability reduction B, with t,; =1year

Irel

Cpst
{1psT 50% | 65% | 75% | 85%
24 49,86% | 64,82% | 74,79% | 84,77%
48 49,73% [ 64,64% | 74,59% | 84,54%
168 49,04% | 63,75% | 73,56% [ 83,37%

To check the validity of eq. (23), the PFD value for the
exact value of PFD,, psr (t =tp;) according to eq. (18)

and the ones from eq. (23) calculated values as well as
the relative difference of both values are given in Table
5. The ratio between t, ,; and t,; averages there:

. tl.PST 24 h
Table 3: Table of value for the rel. probability fort, psr = 24h: t 8760h 0,00274
of failure reduction B, with t,; =3 years ¢ FT 48h
— fort, oy =48h: 2L — —— —-0,00548
= ' ter 8760h
tipsT 60% 70%
exac. PFD | app. PFD [ rel. Ain % | exac. PFD | app. PFD | rel. Ain % t 168 h
7380 | 920604 | 7.36E04 | 2000 | 767604 | 552504 | 28,00 fort, psr =168h: LPST _ =0,01918
[B760 | TT0E03 | 736E-04 | 3333 | OBIE04 | G52E04 | 4575 ' tey 8760h
— =1 == == 1~ As one can see on the values in Table 5, a ratio
PST
0, 0, t - - -
— exac. PFD ap?)(.)lf)FD rel. Ain% | exac. PFD ap?J(.)é)FD rel. Ain % LPST < 0’02 IS SatISfymg to become an adequate small
4380 6,13E-04 | 3,68E-04 40,00 4,60E-04 | 1,84E-04 60,00 1:PT
[ 5760 | BNBE-04 | 3BBE-04 | 5714 | 76304 | THAE04 | 7500 difference between the exact PFD and the approximated
13140 | 1,10E-03 | 3,68E-04 66,67 1,01E-03 | 1,84E-04 81,82 PED
A h | . . It should be observed that the approximation is optimally
ts ohe :ggo ;ee on the values In Table 3 a ratio  ,yanted when the DCpsr factor is also small. It means in
1PST _ — 01666 is not satisfying to become an this case t_hat it is easier to calculat_e thq PFD-Value for a
tor 26280 h System with PST using the approximation formula.

adequate small difference between the exact PFD and
the approximated PFD. In this case it means that the
PFD value must be calculated with the exact formula for
a system with PST.
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Table 5: Table of value for the rel. failure
probability reduction B, with t,; =1 year

DCpsr

t1pst 50% 65%
rel. A rel. A
exac. PFD| app. PFD| in % |exac. PFD] app. PFD| in %
24 1,67E-03 | 1,66E-03] 0,27 | 1,17E-03] 1,17E-03 ] 0,51
48 1,68E-03 | 1,66E-03] 0,82 | 1,18E-03 | 1,17E-03 | 1,00
168 1,69E-03 | 1,66E-03 | 1,89 | 1,20E-03 | 1,17E-03 | 2,92
DC psr
t1pst 75% 85%
rel. A rel. A
exac. PFD| app. PFD] in % [exac. PFD] app. PFD] in %
24 8,39E-04 | 8,32E-04 ] 0,82 | 5,07E-04 | 4,99E-04 | 1,53
48 8,48E-04 | 8,32E-04 | 1,88 | 5,16E-04 | 4,99E-04 | 3,27
168 | 8,78E-04 | 8,32E-04 | 5,19 | 5,52E-04 | 4,99E-04 | 9,58

5 Coherence between PFDy,, pst and
I:)FDang, w.PST

From both previous chapters 3 and 4 a light coherence
between the PFD values PFDyqpst, i.€. for a system
without PST, and the average PFD value, PFDaygs, wesT,
i. e. for a System with PST, can be established. Provided
that, all PST intervals have the same length, i.e.
t.psr =t psr, and that the inequation t, o <<tp;

counts. It results then from eq. (19) and (23)

1
PFDang, w.PST = E PFD,, pst (t=tp7)
1
= E PFDWO, PST (t :tPT ) . (1_ DCPST )

(24)
To check the validity of this equation the same
parameters as mentioned before are used again:
to; =1Jahr =8760 h

1
t =24h=— vyears
1.PST 365 y
2
/I = 48h=—— vyears
365

/l = 168h _ years
365
The chosen failure rate is
Ap = Apy pr =38-10"' %

In Table 6 the PFD-values with exact values for
PFD,yg3miter according to eq. (5) up to eq. (9), in the

eg. (25) are presented generally,

PFD .ZPFD

avg 3, mittel =

1
n
1 1 A 2 2
:H.;(E-ﬁ-[tn.pg (o 1).pst ]

_)“DU ’ DCPST -t (n—l).PST)

part av

(25)
and the ones from eq. (24) calculated values and the
relative difference of both values is given.

Table 6: Table of comparison to the exactly
PFD value and the approximated PFD values
with t,; =1 year

DCpsr
tl.PST 50% 65%
exac. app. [rel.A] exac. app. rel. Ain
PFDavg3,w I:>|:Davg3‘w in % I:>|:Da\/g3,w I:>|:Davg3,w %
24 8,34E-04 | 8,32E-04 | 0,27 | 5,86E-04 | 5,83E-04 0,51
48 8,39E-04 | 8,32E-04 | 0,82 | 5,90E-04 | 5,83E-04 1,28
168 8,46E-04 | 8,32E-04 | 1,62 | 6,02E-04 | 5,83E-04 3,18
DCpsr
tl.PST 75% 85%
exac. app. [rel.A] exac. app. rel. Ain
PFDavg3,w I:>|:Davg3‘w in % I:>|:Da\/g3,w I:>|:Davg3,w %
24 4,20E-04 | 4,16E-04 | 0,82 | 2,54E-04 | 2,50E-04 1,53
48 4,24E-04 | 4,16E-04 | 1,88 | 2,58E-04 | 2,50E-04 3,27
168 4,39E-04 | 4,16E-04 | 5,19 | 2,76E-04 | 2,50E-04 9,58

As one can see on the values in Table 6, a ratio of

t . s
—+PST <0,02 is satisfying to become an adequate small

Lo
difference between the exact and the approximate
PFDavgswpest Vvalue. It should be observed that the
approximation is optimally adapted when the DCpsr
factor is also small. It means in this case, that it is very
easy to calculate the PFD value for a system with PST
using the approximation formula eq. (24).

6 Conclusion

In this paper the mathematical coherence between the
PFD value of a 1lool system without PST and the
average PFD value of a 1ool system with PST was
presented. If the relative probability of failure reduction
is near the DCpgsr factors or the ratio between the PST
interval and the Proof Test interval is sufficiently small,
then for this calculation we can use a simple
approximation, see eq. (24).

Advanced studies may deal with other architecture
models like 1002 or 2003 systems. We assume similar
coherence between the different PFD parameters as
examined in this paper.
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