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Abstract

We study the emergence of intelligent behavior within
a simple intelligent agent. Cognitive agent functions
are realized by mechanisms based on neural networks
and evolutionary algorithms. The evolutionary algo-
rithm is responsible for the adaptation of a neural
network parameters based on the performance of the
embodied agent endowed by different neural network
architectures. In experiments, we demonstrate the
performance of evolutionary algorithm in the prob-
lem of agent learning where it is not possible to use
traditional supervised learning techniques. A case
study of three different trained neural networks is
performed.
Keywords: Robot control, Evolutionary algorithms,
Neural networks, Behavior emergence.

1 Introduction

One of the main approaches of Artificial Intelligence
is to gain insight into natural intelligence through
a synthetic approach, by generating and analyzing
artificial intelligent behavior. In order to glean an
understanding of a phenomenon as complex as nat-
ural intelligence, we need to study complex behavior
in complex environments. In contrast to traditional
systems, reactive and behavior based systems have
placed agents with low levels of cognitive complex-
ity into complex, noisy and uncertain environments.
One of the many characteristics of intelligence is that

it arises as a result of an agent’s interaction with
complex environments. Thus, one approach to de-
velop autonomous intelligent agents, called evolution-
ary robotics, is through a self-organization process
based on artificial evolution. Its main advantage is
that it is an ideal framework for synthesizing agents
whose behavior emerge from a large number of inter-
actions among their constituent parts [9].

In the following sections we introduce multilayer
perceptron networks (MLP), and radial basis func-
tion networks (RBF). Then we take a look at Khepera
robots and related simulation software. In the follow-
ing section we present an experiment with artificial
evolution guiding the self-organization process of a
neural robotic controller. We expect an emergence of
behavior that guarantees efficient maze exploration.
This is tested in the following section by observing
I/O dependencies for three different controllers that
show different behavioral patterns. In the last section
we draw some conclusions and present directions for
our future work.

2 Neural Networks

Neural networks are widely used in robotics for var-
ious reasons. They provide straightforward mapping
from input signals to output signals, several levels of
adaptation and they are robust to noise.

A multilayer perceptron neural network is an inter-
connected network of simple computing units called
neurons which are ordered in layers, starting from
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the input layer and ending with the output layer [5].
Between these two layers there can be a number of
hidden layers. Connections in this kind of networks
only go forward from one layer to the next. The out-
put y(x) of a neuron is defined in equation (1):

y(x) = g

(

n
∑

i=1

wixi

)

, (1)

where x is the neuron with n input dendrites (x0 ...
xn), one output axon y(x), w0 ... wn are weights
and g : ℜ → ℜ is the activation function. We have
used one of the most common activation functions,
the logistic sigmoid function (2):

σ(ξ) = 1/(1 + e−ξt), (2)

where t determines its steepness.

A radial basis function (RBF) neural network rep-
resents a relatively modern network architecture. In
contrast with the multilayer perceptrons the RBF
network contains local units, a fact motivated by the
presence of many local response units in human brain.
Other motivation came from numerical mathematics,
where the radial basis functions were first introduced
as a solution of real multivariate interpolation prob-
lems [12].

The RBF network is a feed-forward neural network
with one hidden layer of RBF units and a linear out-
put layer. By the RBF unit we mean a neuron with n
real inputs ~x and one real output y, realizing a radial
basis function ϕ, such as Gaussian:

y(~x) = ϕ

(

‖ ~x − ~c ‖

b

)

. (3)

The network realizes the function:

fs(~x) =

h
∑

j=1

wjsϕ

(

‖ ~x − ~cj ‖

bj

)

, (4)

where fs is the output of the s-th output unit.

There is a variety of algorithms for RBF network
learning, in our previous work we studied their be-
havior and possibilities of their combinations [8].

3 Evolutionary Learning Algo-

rithms for Robotics

The evolutionary algorithms (EA) [6, 4] represent a
stochastic search technique used to find approximate
solutions to optimization and search problems. They
use techniques inspired by evolutionary biology such
as mutation, selection, and crossover. The EA typ-
ically works with a population of individuals repre-
senting abstract representations of feasible solutions.
Each individual is assigned a fitness that is a mea-
sure of how good solution it represents. The better
the solution is, the higher the fitness value it gets.
The population evolves toward better solutions. The
evolution starts from a population of completely ran-
dom individuals and iterates in generations. In each
generation, the fitness of each individual is evaluated.
Individuals are stochastically selected from the cur-
rent population (based on their fitness), and modified
by means of mutation and crossover operators to form
a new population. The new population is then used
in the next iteration of the algorithm.

Feed forward neural networks used as robot con-
trollers are encoded in order to use them the in the
evolutionary algorithm. The network is represented
as a floating-point encoded vector of real parame-
ters determining the network weights. Thus, the
encoded network is a vector (P1, . . . , PN ) where N
is a total number of neurons in the network, and
each Pj represents an encoded neuron parameters,
i.e. Pj = (wj0, . . . , wjNj

) where Nj determines the
number of j-th neuron inputs (it is generally differ-
ent for different layers).

In our approach, rather typical evolutionary oper-
ators have been used, namely the uniform and arith-
metic crossover and the additive mutation. As is
typical for the floating-point encoded individuals of
EA, all of these operations work on the floating-point
number level and they do not disrupt t he number
representation boundaries. The uniform crossover
takes two individuals, traverses the whole vector and
for each parameter it decides at random weather to
exchange this position between parents or not. Arith-
metic crossover combines two parents into a new indi-
vidual by finding each new parameter value as a ran-
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dom number between the boundaries given by the
parents parameter values. A mutation performs a
random additive change to a parameter value with
the probability of change set in advance [13]. The
rate of these operators is quite big, ensuring the ex-
ploration capabilities of the evolutionary learning.
A standard roulette-wheel selection is used together
with a small elitist rate parameter. Detailed discus-
sion about the fitness function is presented in the
next section.

4 Experiments

4.1 The Khepera Robot

Khepera [7] is a miniature mobile robot supported
by two lateral wheels that can rotate in both di-
rections. The sensory system employs eight active
infrared light sensors distributed around the body
whose positions are numbered in the clockwise di-
rection like this: 1-left, 2-front left, 3-front, 4-front,
5-front right, 6-right, 7-back, 8-back. In active mode
these sensors emit a ray of infrared light and measure
the amount of reflected light. The closer they are to
a surface, the higher is the amount of infrared light
measured. The Khepera sensors can detect a white
paper at a maximum distance of approximately 5 cm.

In a typical setup, the controller mechanism of the
robot is connected to the eight infrared sensors as in-
puts and its two outputs represent information about
the left and right wheel power. For a neural network
we typically consider architectures with eight input
neurons, two output neurons and a single layer of five
to ten hidden neurons is considered in this paper. It is
difficult to train such a network by traditional super-
vised learning algorithms since they require instant
feedback in each step, which is not the case for evo-
lution of behavior. Here we typically can evaluate
each run of a robot as a good or bad one, but it is
impossible to assess each one move as good or bad.
Thus, the evolutionary algorithm represent one of the
few possibilities how to train the network.

Although evolution on real robots is feasible, serial
evaluation of individuals on a single physical robot
might require quite a long time. One of the widely

Figure 1: In the maze exploration task, agent is re-
warded for passing through the zone, which can not
be sensed. The zone is drawn as the bigger circle,
the smaller circle represents the Khepera robot. The
training environment is of 60x30 cm. For testing, the
agent is put in the bigger maze of 100x100 cm. This
particular agent strategy is to follow wall on it’s left
side.

used simulation software (for Khepera robots) is the
Yaks simulator [2]. Simulation consists of predefined
number of discrete steps, each single step corresponds
to 100 ms. To evaluate the individual, simulation is
launched several times. Individual runs are called
“trials”. In each trial, neural network is constructed
from the chromosome, environment is initialized and
the robot is put into randomly chosen starting lo-
cation. The inputs of neural networks are intercon-
nected with robot’s sensors and outputs with robot’s
motors. The robot is then left to “live” in the simu-
lated environment for some (fixed) time period, fully
controlled by neural network. As soon as the robot
hits the wall or obstacle, simulation is stopped. De-
pending on how well the robot is performing, the in-
dividual is evaluated by value, which we call “trial
score”. The higher the trial score, the more success-
ful robot in executing the task in a particular trial.
The fitness value is then obtained by summing up all
trial scores.

4.2 Maze Exploration

In this experiment, the agent is put in the maze of
60x30 cm. The agent’s task is to fully explore the
maze. Fitness evaluation consists of four trials, indi-
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vidual trials differ by agent’s starting location. Agent
is left to live in the environment for 250 simulation
steps.

The three-component Tk,j motivates agent to learn
to move and to avoid obstacles:

Tk,j = Vk,j(1 −
√

∆Vk,j)(1 − ik,j). (5)

First component Vk,j is computed by summing ab-
solute values of motor speed in the k-th simulation
step and j-th trial, generating value between 0 and
1. The second component (1 −

√

∆Vk,j) encourages
the two wheels to rotate in the same direction. The
last component (1 − ik,j) encourage obstacle avoid-
ance. The value ik,j of the most active sensor in k-th
simulation step and j-th trial provides a conservative
measure of how close the robot is to an object. The
closer it is to an object, the higher the measured value
in range from 0 to 1. Thus, Tk,j is in range from 0 to
1, too.

In the j-th trial, score Sj is computed by summing
normalized trial gains Tk,j in each simulation step.

Sj =

250
∑

k=1

Tk,j

250
(6)

To stimulate maze exploration, agent is rewarded
when it passes through the zone. The zone is ran-
domly located area, which can not be sensed by an
agent. Therefore, ∆j is 1, if agent passed through the
zone in j-th trial and 0 otherwise. The fitness value
is then computed as follows:

Fitness =

4
∑

j=1

(Sj + ∆j) (7)

Successful individuals, which pass through the zone
in each trial, will have fitness value in range from 4 to
5. The fractional part of the fitness value reflects the
speed of the agent and it’s ability to avoid obstacles.

5 Results

All the networks included in the tests were able to
learn the task of finding a random zone from all four
positions. The resulting best fitness values are all
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Figure 2: Plot of fitness curves in consecutive pop-
ulations (maximal, minimal, and average individual)
for a typical EA run (one of ten) training the RBF
(MLP resp.) network with 5 units.

in the range of 4.3–4.4 and they differ only in the
order of few per cent. It was observed that MLP
networks performed marginally better than RBF net-
works. More details about the relative performance
of different network architectures is given in [13].

The important thing is to test the quality of the ob-
tained solution is tested in a different arena, where a
bigger maze is utilized (Fig. 1). Each of the architec-
tures is capable of efficient space exploration behavior
that has emerged during the learning to find random
zone positions. The above mentioned figure shows
that the robot trained in a quite simple arena and
endowed by relatively small network of 5–10 units is
capable to navigate in a very complex environment.

Several behavioral patterns have been observed for
the successful controllers. The most successful indi-
viduals exhibited a wall-following behavior which is
under circumstances a very efficient way to explore
a general maze. Depending on the initial position
and orientation, either left wall or right wall follow-
ing controllers have evolved. In order to gain insight
into the function of a controller, we have studied the
partial I/O mappings from individual sensors to the
motor control. We have chosen a typical left wall
follower, a right wall follower, and an agent that ex-
hibited general obstacle avoidance behavior without
the maze exploration strategy. The plots of partial
I/O mappings for these three agents are presented
at Fig. 3 (left wall following behavior), Fig. 4 (right
wall following behavior), and Fig. 5 (obstacle avoid-
ance behavior).
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Figure 3: Plot of eight sensor functions for the left
wall following agent.

From the Fig. 5 (mainly sensors 2 and 5) one can
see a symmetric behavior of the obstacle avoidance
agent. When the obstacle is in front-left direction
(sensor 2 is active), the agent has a tendency to power
left engine more, i.e. it turns right from the obstacle.
Inversely, the responses to sensor 5 mean powering
the right wheel, i.e. turning left. Similar form of
the I/O mapping for sensors 1 and 6 support this
behavior. When the obstacle is in front (sensors 3
and 4), the agent chooses to turn right.

For the wall following agents we are interested to
observe the symmetry between Fig. 3 and Fig. 4.
First, let us note that for the left wall following agent,
the important sensors should be sensors 1–4, while for
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Figure 4: Plot of eight sensor functions for the right
wall following agent.

the right wall following one, it should be sensors 3–6.
If the maze has wide enough corridors, the sensors 5–
6 (or 1–2, respectively) should not get many inputs
at all. The back sensors 7–8 should reflect the situa-
tion that when they register a wall, it means that the
left wall follower is turning right and the right wall
follower is turning left. One can see that at the last
row of Fig. 3 the left engine runs faster, i.e. the left
follower is turning right, while the same row of Fig. 4
shows the opposite situation of an agent turning left.
The many peaks of the function of the sensor clos-
est to the wall (i.e. sensor 1 on Fig. 3 and sensor 6
on Fig. 4) demonstrate the typical duck-like swinging
ride of both agents while trying to keep the optimal
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Figure 5: Plot of eight sensor functions for the obsta-
cle avoiding agent.

distance from the wall by small fluctuations. Finally,
the comparison of sensors 2 and 3 at Fig. 3 with sen-
sors 4 and 5 at Fig. 4 shows that in case of an obstacle
in front-left (front-right, resp.) each agent turns in
the opposite direction, i.e. right (or left, resp.), thus
following its strategy.

6 Conclusions

The main goal of this paper was to demonstrate the
ability of neural networks trained by evolutionary al-
gorithm to achieve non-trivial tasks in controlling the
robotic agent with the emphasis on the evolved be-

havior patterns. The results are quite encouraging,
rather small MLP or RBF neural networks are able
to develop the exploration behavior. The trained net-
work is able to control the robot in the previously un-
seen environment. Typical behavioral patterns, like
following the right or left wall have been developed,
which in turn resulted in the very efficient exploration
of an unknown maze. The best results achieved by
any of the network architectures are quite compara-
ble, with simpler perceptron networks (such as the
5-hidden unit perceptron) marginally outperforming
RBF networks.

The analysis of the evolved controller shows that
there can be observed a small set of rather simple
and rational rules behind the “black-box” of the neu-
ral network. Let us note that the wall following con-
trollers have been MLPs while the obstacle avoiding
one was an RBF network. For the future work we
would like to make use of the local nature of the RBF
networks and its similarity to fuzzy logic controllers
in order to automatically obtain a set of fuzzy rules
directly from a trained RBF network.

The results reported above represent just a few
steps in the journey toward more autonomous and
adaptive robotic agents. The robots are able to learn
simple behavior by evolutionary algorithm only by
rewarding the good ones, and without explicitly spec-
ifying particular actions. The next step is to ex-
tend this approach for more complicated actions and
compound behaviors. This can be probably realized
by incremental learning one network a sequence of
several tasks. Another—maybe a more promising
approach—is to try to build a higher level architec-
ture (like a type of the Brooks subsumption architec-
ture [1]) which would have a control over switching
simpler tasks realized by specialized networks. Ide-
ally, this higher control structure is also evolved adap-
tively without the need to explicitly hardwire it in
advance. The last direction of our future work is the
extension of this methodology to the field of collective
behavior.
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