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Abstract: - This paper deals with the modeling of tokamak nuclear fusion reactors. In order to control the 
creation of unstable modes in fusion processes, it is necessary to derive numerical models that are suitable for 
control strategies. This model addresses flux and energy conservation issues and the mechanisms behind the 
creation of uncontrollable modes are discussed. The dynamics of the system are given by the energy functions 
which solve for the currents in the structure, the plasma current and plasma position. Thus, the equations for the 
state variables will be derived based on the Hamiltonian equation of motion. In order to solve numerically, this 
model will be linearised around an operation point by taking a Newton-Raphson step. Besides, the system output 
will be completed by considering one equation for the flux and another for the poloidal field. Finally, the 
resulting low order linear model is modified so as to obtain a standard state space model verified against 
measuring both time and frequency domain responses.  
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1   Introduction 
This paper deals with the modeling and control of 
tokamak nuclear fusion reactors (see [20-21] and 
[1]). Nuclear fusion is an attractive source of power 
since the fuels are abundant, there are no long term 
waste management issues and it is inherently safe 
[12]. The most common reaction occurs when the 
hydrogen isotopes deuterium and tritium fuse to 
release helium, a neutron and energy. The heat 
generated when the neutrons are slowed down by a 
blanket, produces electricity while the lithium of the 
blanket react with the neutrons to form tritium. Thus, 
lithium and deuterium are the primary fuels.  
Current ramping is necessary to reach temperatures 
high enough to overcome the Coulomb barrier. At 
these temperatures the atomic nuclei are dissociated 
from their electrons resulting in a mixture called 
plasma. Currently, the most successful fusion reactors 
are toroidal devices called tokamaks that use 
magnetic fields to confine similarly shaped hot 
plasma [5]. The plasma is confined using 
electromagnetic forces generated by external 
magnetic fields: The toroidal field is produced by a 
set of poloidal coils and the smaller poloidal field 
from the induced plasma current.  

During large plasma disturbances, such as 
sawteeth, ELMs, VDEs (see [6] and [17-18]) and 
minor disruptions, voltage saturation can occur and as 
a consequence the vertical position can be lost 
damaging the wall of the vessel (see [10] and  [13]). 
Besides, superconducting plasma provokes the 

creation of uncontrollable modes because when the  
magnetic transverse field changes, the magnet 
generates two types of heat loss, the so called 
coupling loss and the so called hysteresis loss, 
grouped together as AC losses, which heat up the 
superconducting material. Once the superconductivity 
is lost, the electric currents in the coils produce an 
enormous heat lost due to the ohmic resistivity [5] 
and [2]. The objective is to design a controller that 
improves the stability and performance properties of 
a tokamak [7]. However, the performance of the 
control is limited by the open-loop plant model used 
in the design phase and it is therefore necessary to 
derive a suitable tokamak physical model (see [15] 
and [4]). In order to understand the tokamak physics 
and engineering linear and non-linear models will be 
studied (see [8-9]). Firstly, a non-linear model will be 
obtained simplifying the Grad-Shafranov equilibrium 
equation. Based on these equations, a lump parameter 
model will be derived and linearised about any 
prescribed equilibrium state.  

This model of tokamak system relates to plasma 
position and shape control (see [14] and [25]), flux 
and energy conservation are treated explicitly, using a 
Lagrangian approach, whereas the adiabatic 
approximation is a natural result from massless 
plasma.  

 
2   Tokamak Equilibrium 

The Grad-Shafranov equation describes the shape 
and current profile of toroidally symmetric plasma in 
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an externally applied magnetic field (see [26]). The 
equilibrium equations are found by considering the 
force balance between the thermodynamic pressure 
and magnetic force, 

p∇=×Bj ,       (1) 
subject to toroidal symmetry, where  is the current 
density,  is the magnetic field and 

j
B p  is the 

pressure. Thus, the magnetic surfaces are surfaces of 
constant pressure and the lines of current lie on the 
magnetic surfaces.   

A rigid plasma displacement model will be 
considered, i.e., the current density profile is assumed 
to be unchanged under spatial translation although 
each element might change proportionally to the 
changes on the total plasma current. The plasma is 
considered as a unit which is allowed to move either 
vertically or radially and the vessel eddy currents will 
use an eigenmode representation. A crude single 
filament model of the plasma vertical position 
response is adequate for the control problem. 
However, when a subsystem is reduced using the 
vessel eigenmode model reduction, there are no 
guaranteed stability properties.  

The model is derived from the plasma and circuit 
equations, perturbing the vertical and radial force 
balance equations. Changes in current profile are 
treated as disturbances (explicit treatment in [22-23]). 
In this sense, the model is based on the one presented 
by A. S. Sharma in [17] and [24] and it has been 
developed with the aim of extending the control 
techniques used and the stability region of the 
resulting closed-loop system. 

 
3   Tokamak Modeling 
The main components of the model are the poloidal 
field coils, driven by external voltage sources, the 
passive structure, with electromagnetically induced 
eddy currents, and the plasma (see also [3], [16] and 
[27]). A cylindrical coordinate system is used 
( )φ,, zR  with the following simplifying assumptions 

• The system is symmetric around the z-axis. 
• Any poloidal currents are ignored. 
• The tokamak structure will be represented by 

a finite set of toroidal circuits fixed in space 
with finite resistance. The toroidal currents 
may vary in time. 

• The plasma will be represented by a finite 
number of filaments free to move 
axisymmetrically with constant finite mass and 
resistance. The currents may vary in time. 

 
3.1 The energy functions 
The generalised coordinates are the plasma elements 

currents, structure currents and variation of the 
position of the plasma current elements  
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with the self and mutual inductance matrices and a 
constant diagonal mass matrix.  

The input vector contains the vector with the 
effective voltages applied to each plasma element 
and a vector of externally applied poloidal field coil 
voltages 
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In turn, the resistance matrix is defined as  
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The kinetic energy is given by 
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where the plasma internal energy is 22qEq &′=W  
and  is a constant matrix and the generalised 
potential is 
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the integral denotes the total energy dissipated from 
time  to time t .  0t

The Lagrangian is the difference between the 
kinetic and potential energy  VTL −=
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The Lagrangian is used to derive Hamilton´s 
equations of motion as ( ) LtH −′= qpqp &,,  where 
the generalised momentum is 

qEqqTqp &&& ′+=∂∂= L     (8) 
Thus, the Hamiltonian is the sum of the kinetic 

and potential energy of a closed system expressed in 
terms of momentum, position and time 
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The Hamiltonian the equations of motion may be 
derived from the relations qp ∂∂−= H&  and 

pq ∂∂= H . Besides, equation (8) implies that 
pEqTq 1)( −′+=&     (10) 

Now, eq. (10) serves to eliminate  from the 
Hamiltonian 
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Thus, substituting equations (8) and (11) into the 
first equation of motion gives 
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This equation can be extended into four vector 
equations, the Kirchoff voltage law for the plasma 
elements, for the structural and poloidal circuits and 
the force balance in the R  and  directions 
respectively 
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3.2 Lumped System 
A lumped model may be derived from equations 
(13-16) by defining averaged plasma quantities. The 
total plasma current will be denoted by , the 
density distribution  is calculated from the 
Grad-Shafranov equation by an inverse equilibrium 
reconstruction code. The plasma mass is considered 
to be zero and its average radial position  

pI
( zRj , )

∑∑= k kk kk iRiR ,     (17) 

its average vertical position is defined analogously. 
The effective mutual inductance matrix is the 

addition of the mutual inductance matrices for all 
plasma elements and the vector structure currents 

∑=
k
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The effective plasma self-induction is the 
addition of the mutual inductance between plasma 
elements 
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k h
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To evaluate the internal energy of the plasma, the 
equations governing the plasma profile Bj×=∇p  

and Bj ×∇=0μ  which substituting gives 
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where the right hand side is zero for small aspect 
ratio, which implies that 
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being 0 the magnetic field outside the plasma. 
Besides, we may define the constant parameter 
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4   A Linear Model  
The four matrix equations (13-16) define the 
evolution of the variables ( )sI,,, pIzR

)

 for 
computation simplicity we solve for the increments 
and replace the variables (  with zR, ( )0

p
0 ,p zIRI  , 

where s the constant equilibrium plasma current. 
Thus, we introduce the perturbations 
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4.1 The structure circuit equation 
The tokamak structure obeys the circuit equation 
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subtracting the equilibrium equation  
and neglecting second order terms 
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Besides, expanding in terms of the state variables 
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so that the linearised equation in terms of the state 
vector and its time derivative is 
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Now, since the derivatives are computed at the 
equilibrium, the system may be simplified as 
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4.2 The plasma circuit equation 
The plasma circuit equation becomes 
( )

ppp
pppp VI

dt
lRISILd

=Ω+
++ 2

0 βπμspsIM
 (32) 

expanding the derivative of a product, using first 
order Taylor expansion and neglecting second order 
terms 
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using the chain’s rule for the plasma inductances, 
considering the plasma resistance to be independent 
of , subtracting the equilibrium equation and since 
the radial magnetic field at equilibrium is zero 
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Thus, if the plasma resistance is independent of ,  x
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4.3 The vertical force balance equation 
The vertical force balance equation (16) becomes 
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Considering the variation of the equation with 
respect to time,  
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Thus, using that the radial magnetic field at 
equilibrium is zero gives a generalized vertical force 
balance equation of the form 
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4.4 The radial force balance equation 
The radial force balance equation (15) becomes 
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Considering the variation of the equation with 
respect to time gives 
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Thus, the linearised radial force equation is 
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5 An Eigenmode Representation of 

the Passive Structure Currents 
The non-linear circuit equations of the structure and 
plasma can be written as a matrix equation 
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where the subscript  stands for vessel (passive 
structure) and  for coils. The eddy currents occur 
over different time scales associated with . 
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Now the passive structure states in terms of the 
current eigenmodes rather than the currents so as to 
enable truncation of the appropriate eigenmodes. 

6   System output 
We can relate the system output to the state of the 
system by writing Cxy = . In the output vector 
appear some states of the tokamak, the poloidal 
magnetic field and the magnetic flux.  
There are flux loops all around the tokamak. A 
change in flux within the loop is measured by the 
mutual inductances between the flux loop and 
plasma or structure ( )ssf IM+Δ=ΔΦ ppf IM . This 
equation can be expanded about the plasma 
equilibrium state 
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which in terms of the state vector gives 
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The poloidal magnetic field probe is a loop of 
negligible area that measures the magnetic field 
normal to the loop, so that  being 

.  Expanding  in terms of the state 
variables about the tokamak equilibrium 
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Thus, for a particular diagnostic, denoted with the 
subscript , the relationship between the state of the 
system and the output 

n
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7   State space model of a tokamak 
The four physic equations are now linearised about 
an equilibrium point  to give the standard 
state-space control model  

0x0 =

DuCxy
BuAxx

+=
+=&

     (49) 

The structure circuit equation, vertical force balance, 
radial force balance and structure circuit equations in 
the matrix form given in Sections 4.1-4.4 lead to a 
system of the form , which may be 
rewritten as the first equation of the system (49). 

uRxxM =+&
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8 Conclusion 
A tokamak numerical model has been presented 

based on the Hamiltonian equation of motion. In 
order to solve this system numerically, the model has 
been linearised around an operation point taking a 
Newton-Raphson step. Besides, a state space control 
model has been derived by considering the flux and 
the poloidal field equations.  

The resulting state space control model is 
currently being verified in order to extend the 
performance of the existing PID schemes 
guaranteeing closed loop stability and performance 
via an a priori bound. 
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