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Abstract: - The main goal of this paper is to show a way to increase air traffic safety through automation and this 
way permit its growth. An algorithm has been built to allow fully automatic mid-air collision, ground, terrain or 
building avoidance, without any intervention from the pilot. Additionally, the algorithm allows fully automatic 
navigation. These capabilities have been tested through simulation. We plan to use this software with a flight 
simulator. The software will take the pilot’s place in these tests. This way the software will be evaluated in a 
similar way to how pilots learn and are assessed. 
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1   Introduction 
World air traffic is permanently on the increase. Air 
traffic density is growing and will continue to do so 
in areas of high population density and rising 
economic level. This traffic density growth raises 
constant concern over air traffic conflicts and 
collisions [1] and safety generally. 
     Communication between the controller and pilots, 
originally by voice only in a language, which is 
sometimes neither the pilot’s nor the controller’s 
mother tongue, is a source of ambiguities and 
misunderstandings. Some such misunderstandings 
still cause safety problems today and not only involve 
small airplanes but also big commercial aircraft.  
Generally, automation aims to do away with the 
“human errors” that unfortunately still occur [2]. 
Improvements like cockpit printers and displays and 
communication via Datalink moved in this direction 
[3]. 
     Most input information is now processed 
automatically in today’s large commercial aircraft. 
First, this is necessary when the pilot does not have a 
clear view of the area. Second, it is safer then leaving 
it to the pilot’s subjective assessment and judgment. 
In this way, GPS, Traffic Collision Avoidance 
Systems (TCAS II or T2CAS) [4], ground and airport 
databases and systems (Enhanced Ground Proximity 
Warning System – EGPWS) [5] and so on 
automatically report the aircraft’s position, the 
position and trajectory of a nearby aircraft, the 

surrounding terrain, airport situation, buildings, even 
aerials. These systems automatically calculate 
whether a collision with another aircraft is possible, a 
flight into terrain is hazardous, or the glideslope 
descent rate is excessive.  
     However, within this continuous trend towards 
automation, the automatic action or maneuver 
sometimes needs an as yet unattained level of 
intelligence and flexibility. The input systems 
calculate and clearly explain what the pilot should do 
but not exactly how he or she should do it.  
     Finally, there are some aeronautical problems that 
could benefit from the software presented in this 
paper. One is the need for faster reaction time for 
collision avoidance in military aircraft. Another is the 
need for a safer, possibly automatic, way to keep an 
aircraft hijack situation under control.  
 
 
2 New Algorithm 
The algorithm is based on reinforcement learning [6]. 
This way the agent modifies its action as it proceeds 
in the learning process. The agent first acts 
unintelligently with a very high error rate. Later, after 
taking a near correct action in a specific 
circumstance, the agent gathers information on this 
action, as well as on the erroneous actions and their 
circumstances. The agent tries to repeat its successes 
and avoid its mistakes in the same or similar 
circumstances. The agent optimizes its performance 
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by relating the best actions to the same or similar 
environments and circumstances and also by relating 
actions to be avoided to the same or similar 
circumstances [7].  
     The algorithm provides specific learning 
principles that specially support and speed up the 
learning process: 
     Mistakes and successes: provisional and final 
results. If we aim to build a smart powerful and 
flexible algorithm, the information on the results has 
to give both positive and negative in-process 
feedback for each action and not wait for the end 
result. 
     Granularity: intensity of resulting values. One 
way of enriching the resulting data is to have the 
system know the intensity or extent of the resulting 
values: how positive or negative the successful or 
mistaken results were, as opposed to just the YES or 
NO feedback [8]. 
     Measurement of time. When there is a time lapse 
between the action and the result, even if both happen 
repeatedly, there are other intermediate results that 
could be candidate effects for the combined cause 
(environment plus action). Taking into account these 
time lapses helps to establish associations that would 
not be detected if only the simultaneous occurrence 
of a perception, an action and a result were 
considered. Other time lapses between the 
environmental data, the action and the perceived 
result are also taken into account. Measuring such 
time lapses facilitates the statistical analysis and 
speeds up the learning association. 
     Back propagation of the results evaluation. The 
perceptions that do not have a positive or negative 
value of their own, but are simultaneous or 
contiguous to others that do, receive a corresponding 
back-propagated positive or negative value. 
     Multisensorial patterns. When groups of 
different and heterogeneous sensors are used, the 
input is richer and much more easily identified, and 
the action is therefore better selected. 
     Contiguous patterns. When there is a lapse of 
time between events its elements may not be alike or 
even similar. A pattern comprising all these 
contiguous perceptions enables the identification of 
this reality. Additionally, there is the possibility of 
juggling with more actions, since there are more input 
combinations within one string. Each combination is 
potentially associated with a different action. 
     Direct non-learnt action. In the early stages, 
before the agent has learnt enough to survive, it 
should take some direct intelligent actions that would 
be triggered by some specific perceptions or stimuli 
[9]. 

     Action probability. Actions should be taken in 
proportion to their probability of bringing about a 
successful result. The algorithm also includes a 
proportion of exploratory actions. 
     Deletion of non-meaningful information. When 
millions of perceptions, actions and result patterns are 
being processed, many associations are not 
meaningful and therefore should be deleted. In some 
cases, where there are huge amounts of data, most 
associations are further deleted. 
     The algorithm has five main steps: 
     Step 1. A number of sensors perceive the 
environment to generate the above multisensorial 
perception pattern. This perception pattern is 
evaluated according to other positive and negative 
value sensors to output a mean value.  
     Step 2. An action is selected in the light of all the 
historical information about the positive and negative 
values associated with the perception-action pairs. 
This is done according to the probabilities of a more 
positive or less negative value being generated for the 
pairs. Nevertheless, exploration, i.e. selection of a 
different action than the one dictated by experience, 
takes place in the early stages to increase the 
experience level. Some direct actions, e.g. special 
action routines for getting out of difficult situations 
during the early learning period, when there is not 
enough accumulated experience, are also taken in a 
few exceptional circumstances.  
     Step 3. The perception pattern and action pattern 
pairs are associated with the resulting value output 
during the action time cycle or later. This resulting 
value is associated with a decreasing weight 
depending on the number of cycles in which the 
result occurred versus the perception and versus the 
action, according to formula 

v)a,p(V)a,p(V j
av

k
pa1ijkijk αα+= − , (1) 

     where V is the value of the pair association, p is 
the perception pattern, a is the action pattern, I is the 
cycle in which the resulting value occurs and α is the 
discount value per cycle that is applied to reduce the 
resulting value to the historical value (the above 
measurement of time). 
     Step 4. Additionally, each perception pattern has a 
unique value that depends on the resulting value 
perceived later, its intensity and sign, and the number 
of cycles between the result and the perception. At 
the same time, the less certainty there is of this value 
being associated with the patterns, the bigger the part 
of the resulting value back-propagated towards 
previous perception patterns is. The formula for this 
is 
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     where VPi is the value of the perception pattern in 
the present cycle, αv is the discounted value 
depending on the elapsed j cycles, cPi-1 is the certainty 
of the perception pattern value in the previous cycle, 
VPi-1 is the value of the perception pattern in the 
previous cycle. 
     The above certainty of such a value for the 
perception pattern depends on the actual resulting 
value and the number of cycles between the result 
and the perception (measurement of time). The 
formula for this is 
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     where cpi is the certainty. 
     Step 5 of the algorithm is the deletion phase, when 
the superfluous information is deleted. This step 
deletes the perception patterns that are less frequent 
than a specific certainty factor, as well as the pair 
associations with a lower level of association than 
another constant. If they are higher than those factors, 
they are reduced by a variable amount. 
 
 
3   Experimentation and Testing 
The software, and algorithm, is highly adaptable to 
dynamic 2D or 3D environments, giving agent 
movements, collision avoidance, obstacle contouring 
and navigation a great deal of flexibility. It has 
proven therefore to be very useful for aeronautics, 
submarines, ground vehicles and robotics. The 
algorithm has been generalized for all kinds of input 
or output patterns. Therefore, it can be used in the 
aeronautics application described here with different 
input (environmental) and output (maneuvers) data or 
the same data in a wide variety of different formats. 
Owing to the algorithm’s generalization, it is also 
adaptable to different dynamic applications as 
mentioned above. 
     A simulator has been built using the above 
algorithm, providing simulated input information 
similar to what is today relayed to the aircraft and 
feeds the Flight Management System (FMS) and 
other on-board systems. Input data is aircraft, airport 
and start of the runway positions, nearby terrain, 
building and obstacle positions and so on. Output 
information is forward maneuvers or change the 
trajectory up or down or turning in a specific 
direction. 
     The simulation starts with a learning phase 
through which the agent/aircraft proceeds, 
continuously improving its dynamic behavior. When 

the learning curve has converged the software is 
ready for use.  
     A first experiment was run simulating an aircraft 
near the airport runway. To be able to clearly track 
the learning process, an ultralight or very small 
aircraft was considered. As this kind of aircraft can 
approach the airport laterally and does not necessarily 
have to align with the start of the runway until the 
end of the glideslope, there is a large space with the 
shape of a virtual cone in which the aircraft can 
decide the landing approach. The cone was designed 
with virtual walls which define the maximum 
permitted altitude and lateral angles for approach. 
The aircraft can physically go through the cone’s 
virtual walls, but the landing maneuver will not be 
correct unless it keeps inside. The start of the runway 
is at the end of this virtual cone. In a such large 
space, all possible errors of an unskilled / pre-
learning agent or aircraft are crystal clear since the 
ultralight or small aircraft initially has no 
maneuvering limitations, and the learning process is 
easier to follow. The glideslope of a large aircraft 
would have been like a narrow tunnel.  
     In this experiment there are a high number of 
patterns. These patterns depend on the aircraft’s 
position, orientation to the start of the runway and 
perception of the virtual cone walls. These complex 
patterns are multiplied combinatorially to produce 
hundreds of thousands. As an added difficulty, the 
agent/aircraft starts every trial from a different and 
randomly selected point and with a different and 
random orientation with respect to the start of the 
runway. It never knows where it is in the space (this 
is not necessary in this experiment). All the 
information that the agent/aircraft has is its 
orientation towards the runway and its proximity to 
the virtual cone walls –and this only when it is very 
close.  
     First comes the simulated learning phase. In the 
first trial, the aircraft makes a number of senseless 
movements. No limitations have been placed on these 
movements. Therefore, the number of possible 
actions is higher and mistaken actions are more 
likely. This makes learning more difficult, but more 
obvious and easy to follow when it takes place. If this 
were not a simulation, the first movements of the 
aircraft would send it crashing straight to the ground. 
When the agent starts to navigate with some 
equilibrium, we find that it does not move in any 
particular direction in a sort of fly anywhere 
navigation. Later it starts to head towards the start of 
the runway, but reaches the end of the glideslope 
dangerously. This would in practice force it to abort 
the landing. Finally, the agent learns to navigate 
towards the runway, to keep to the right direction, to 
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correct its trajectory when it is likely to move outside 
the virtual cone (either laterally or vertically) and to 
safely end at the start of the runway. The shape of the 
virtual cone, even if it is a narrow tunnel as in the 
case of a big aircraft, has no impact on the positive 
results (Figure 1) 
 

 
Fig. 1. Aircraft with vertical and horizontally 

produced shadows; runway.  
 

     After the learning process, the successful landing 
levels are practically 100% and the optimum 
trajectory levels are 98%. The first successful 
landings take place after some 1,000 trials. Normally 
there are about 60,000 trials, each with up to 600 
cycles or independent actions/movement (Figure 2).  
 

 
Fig. 2: Learning curve with very early convergence 

 
     Other experiments have been run with the agent 
avoiding flight into terrain or a hazardous ground 
proximity and a number of other obstacles (buildings 
and so on). One principle of the algorithm is that the 
proximity to physical objects (aircraft, terrain, 
buildings) produces a negative value or “error 
feeling”. 
     This principle is used for collision avoidance with 
any physical or virtual obstacle. Physical obstacles 
may be other aircraft, mountains, the ground, 
buildings, aerials and so on. Virtual obstacle means a 

prohibited or unadvisable area like national airspace, 
military zones or areas with hazardous 
meteorological conditions. Therefore, a number of 
different exercises were run with real and virtual 
obstacles. The aircraft moves around the 
obstacle/terrain and steers again towards the previous 
target. 
     Both when avoiding flight into terrain or 
contouring physical and virtual obstacles the agent 
showed great flexibility. The terrain avoidance or 
contouring maneuvers were not only “up or down” 
actions but mixed with left and right turns at many 
different and versatile angles, adapting the maneuver 
to the situation. 
     Additionally, this software can select either a 
contouring maneuver, tracing the obstacle’s profile, 
when it is close to the terrain or a virtual obstacle, or 
another longer and straighter trajectory to avoid an 
obstacle that is at a distance. This flexibility is very 
important for smart and safe aircraft behavior. 
     A third kind of experiment was run with two 
aircraft. The software receives negative values when 
another aircraft approaches the agent. The two 
aircraft approaching with opposite trajectories avoid 
each other in a smart and flexible way. The algorithm 
is so effective, from a safety point of view, that there 
is never a collision even in the very early trials in the 
simulation. This is not done automatically today with 
the help of TCAS II or T2CAS, since the aural and 
visual warnings alert the pilot who has to do the 
maneuver manually [4]. Additionally, the software 
maneuver is very flexible; it is not only an “up or 
down” motion but is adapted to the situation. The 
vertical action is by far the fastest, but there may be 
another aircraft coming behind and above the other, 
which makes such a maneuver unadvisable. This kind 
of situations may happen frequently with a very short 
reaction time with military aircraft. 
     In addition to the collision avoidance maneuver at 
a closer aircraft distance, the software provides a 
conflict avoidance action, where, when possible, a 
straighter trajectory is decided at a longer distance to 
avoid a future conflict with another aircraft [10]. 
     To make it more difficult, two parallel aircraft 
were positioned near the airport to land on the same 
runway. This constitutes a permanent risk of 
collision. At the beginning of the learning simulation 
phase, there are of course negative values (because 
they move too close to each other), as well as a lack 
of equilibrium and stability. The learning process 
leads to the ideal behavior, where both aircraft keep 
together, proceed in parallel, optimize the two 
trajectories and glideslopes and, finally, give each 
other priority to land. Since the software never gives 
any landing priority to any aircraft, they have to reach 
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agreement with each other and try to optimize their 
behavior depending on their trajectories and 
positions.  
     To help with this and other experiments with 
several aircraft, the process has been designed so that 
what one agent/aircraft learns is transmitted to the 
other for faster learning and better performance. In 
this experiment, the two aircraft approach the runway 
along two parallel trajectories, at the minimum 
permitted distance. They proceed keeping this 
minimum distance and the due orientation until the 
aircraft furthest to the side is on the verge of moving 
out of the virtual cone. At this point the aircraft turns 
to correct its trajectory and is bypassed by the other 
aircraft, which goes straight on. Afterwards when the 
second aircraft is trying to avoid hitting the first one 
when it turns towards the center of the virtual cone, 
we find that the second aircraft slows down to avoid 
flying at less than the minimum distance. In this 
skilled way they give way to each other when 
necessary, respect the minimum distances, establish 
their own landing priorities and land one after the 
other at the start of the runway. This experiment has 
been successfully run with randomly selected aircraft 
starting points. The orientation of the aircraft was 
also randomly selected. Note that neither 
agent/aircraft knows the other’s intention; even so, 
they never collide from very early on in the learning 
process (Figure 3). The learning curve converges at 
around 50,000 trials. 
 

 
Fig. 3. Two small aircraft approaching the start of the 

runaway. 
 
     A very special obstacle experiment, which is 
difficult even for a human pilot, has been developed 
with a series of towers and buildings that the aircraft 

has to avoid. Several lines of towers have been 
positioned so that they can only be avoided by flying 
zigzag. Eventually the aircraft –an ultralight for the 
proportions shown in the figure- follows a zigzag 
flight path and goes around the building, avoiding 
collision with them all. 
     Later, an airport runway was added to the 
simulation environment. In this case, the aircraft has 
to go around the towers while descending towards the 
airport. The agent/aircraft moves successfully left and 
right around the towers and when it has successfully 
moved around the last tower, it steers again towards 
the start of the runway and finally lands (Figure 4). 
 

 
Fig. 4. Ultralight aircraft avoiding collision with 

towers. 
 
     The high flexibility of the maneuvers –always 
adapted by the FMS to the physical capabilities of 
each aircraft– is potentially useful in other scenarios 
where high density traffic, as well as a fast reaction 
time, is required. 
     This building collision avoidance capability can be 
helpful for designing an automatic procedure against 
aircraft hijackers. The pilot could quickly and easily 
key a short code or press just one special key, which 
would switch the aircraft to fully automatic mode 
without him being able to switch back (ground ATC 
could do this). In fully mode, it would be impossible 
to collide with a building or change the route. 
     Finally, the agent/aircraft is capable of navigating 
from one spatial point to any other. When a target is 
reached a new objective may be added and so on. 
This automatically provides a full navigation plan 
composed of a number of successive targets and a 
final objective. 
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4   Future Work 
The exercises and tests that we have described here 
have been run on a simulator specially designed for 
this application. This software simulator logically 
accepts and receives digital data about the aircraft’s 
environment and its action in this environment. 
     The final objective is to provide the algorithm 
with digital input data in the format in which it is 
actually relayed to the aircraft, instead of the 
simulated environmental data. Today most input 
information comes in digital format. EGPWS [5] 
supplies data on distance to the ground and TCAS II 
or T2CAS [4] provide distance to other aircraft, their 
trajectory and so on, sending both aural and visual 
signals to the pilot. Here the objective would be to 
supply the algorithm with digital input data –
available before the signals. After the algorithm has 
processed the above data, it would trigger the 
automatic maneuver. The algorithm would benefit in 
this way from its generalization and be able to use 
I/O data in a different format.  
     One way of doing this, now under investigation, is 
with a flight simulator like the ones used today for 
pilot training and assessment. The software (except 
the I/O simulated data today) and the algorithm 
would take the pilot’s place, actually dealing with the 
digital input data and triggering the output 
maneuvers. The results would be displayed on the 
screen as for a real pilot, and the learning process 
could be monitored.  
     Eventually, the fully automated navigation and 
collision avoidance system would be installed in the 
aircraft as TCAS II/T2CAS [4] and EGPWS [5] are 
today. We consider this to be a better place for the 
whole system for safety reasons, and mainly to 
achieve due reaction speed [2]. This does not 
preclude the additional use of environmental 
information, which could be provided from ground 
ATC for larger areas than are detected by the aircraft 
sensors. 
 
 
5   Conclusion 
Nowadays, there is a general trend towards 
automation in aeronautics. Automation is a possible 
way to protect safety in a growing air traffic scenario. 
Today, input information relayed to the aircraft is 
processed automatically instead of going through 
pilot assessment and judgment. Maneuvers are 
automatically recommended to the pilot, if not taken 
by the system. However, there are no automatic 
maneuvers in a number of cases. The pilot receives 
instructions on what to do but not exactly how he or 
she should do it. 

     This software, and its algorithm, has shown its 
capability to automatically produce intelligent and 
flexible maneuvers in the above cases using the 
simulated I/O data described in this paper. Since the 
algorithm is generalized for any I/O data or data in 
any format, we are planning to use it with flight 
simulator and aircraft I/O data. 
     This software provides for collision avoidance in 
mid-air with other aircraft, terrain or ground, 
buildings and so on. Mid-air collision avoidance is 
especially useful for military aircraft. This software 
could also avoid, or at least reduce human errors 
which are frequently due to misunderstandings 
between the cockpit and ground ATC. 
     This software provides very flexible and 
intelligent maneuvers adapted to the situation and not 
only “up or down” actions, which could be 
unadvisable in some cases. Additional flexibility is 
provided for moving around closer or not so close 
obstacles or terrain. Further capability is provided for 
either conflict prediction, triggering a straighter 
trajectory, or collision avoidance at a shorter distance. 
     The software incorporates additional capabilities 
for contouring national airspace, military zones or 
areas with dangerous meteorological conditions. The 
software may allow a faster reaction time for 
maneuvering in critical circumstances, discounting 
pilot reaction time. Finally, it offers a possible 
procedure against aircraft hijack by keying in a 
simple code, which switches the aircraft to fully 
automatic mode. 
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