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Abstract: An approach for hybrid model parameter identification based on sensitivity equations approach is 
tested on a hybrid model for biosurfactant production process. The computer simulations were performed 
using software tools created in Matlab (The MathWorks, Inc.) environment. Possible difficulties and ways of 
practical implementation of the analyzed identification algorithms for the identification of complex hybrid 
models for biochemical processes are outlined. The hybrid model identification results are discussed. 
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1   Introduction 
In the context of this paper hybrid models are 
representations of biotechnological processes 
incorporating mass balance systems for key 
components, and mechanistic sub-models and/or 
artificial neuron networks (ANNs) and/or fuzzy 
subsystems for modeling of specific reactions rates. 
Due to rather complex reaction systems in modern 
biotechnology and chemistry [2, 4, 5, 8, 9, 11], it is 
not possible to describe all important phenomena in 
detailed mechanistic models. Hence, alternative 
methods which are able to bridge some gaps in 
special biochemical or engineering knowledge are 
necessary. Usually, engineers first make use of data 
from production processes to cope with a particular 
problem; using so called engineering correlations, 
which are data-driven descriptions. Their aim is to 
formulate reproducible relations between the 
variables that can be manipulated in the bioreactor 
and the process performance criteria that determine 
the quality of the biochemical transformations to be 
carried out (product amount, its quality etc.). 
Additionally, they make use of more condensed 
representations of their data by representing 
experience-related knowledge in the form of rules-
of-thumb. Further extensions of the data and 
knowledge driven approaches used in 
bioengineering are artificial neural networks and 
fuzzy systems. Hybrid modeling has been used in 
chemical and biochemical engineering for many 
years (e.g., [11]). In the recently published literature, 
several interesting examples demonstrate that such 
hybrid combinations of artificial neural networks, 

mechanistic kinetics and mass balance equations 
lead to considerable advantages [2, 3, 4, 9, 11]. 
In practical applications, the artificial neural 
network sub-models in such hybrid model require 
some attention concerning the appropriate training 
procedures: the most often used type of network in 
this case is the recurrent artificial neural network. 
This technique can also be found in commercial 
software packages. Its decisive characteristic is that 
it requires input data to be taken with a constant 
time increment. Where such data is available the 
recurrent neural network algorithms perform quite 
well. However, in biotechnology, where we must 
deal with many off-line or quasi-off-line data, such 
regular data records must be generated using 
interpolation techniques. Unfortunately, using such 
an interpolation we loose not only accuracy but we 
also may hook some artificial disturbances. 
Furthermore, in biotechnology we are most often 
interested in reaction rates, as they are known to be 
the key quantities allowing to evaluate the behavior 
of conversion processes. Rates must be determined 
from the measured or estimated concentrations by 
differentiation. In this respect noisy signals lead to 
even more distorted estimates of the specific rates. 
Therefore, many classical identification methods 
[10] may fail or do not lead to a solution of required 
precision. 
Hence, one needs robust and effective process 
techniques for identification of hybrid models in 
bioprocess engineering while dealing with complex 
biotechnological processes that can not be modeled 
with the necessary precision using only simple 
engineering correlations and mechanistic models. 
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The described problems can significantly be reduced 
with the „sensitivity equations approach” developed 
for training of the hybrid models [11]. 
 
 
2   Identification of hybrid model 
parameters using sensitivity equation 
approach 
A combination of a mathematical model represented 
by a set of nonlinear differential equations, 
mechanistic specific reaction rates expressions and 
an artificial neural network is shown in Fig. 1. The 
main problem arising with such a combination is 
that the usual training (parameter identification) 
procedures may not work or their performance is 
significantly reduced. Hence different training 
procedures must be used. 
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Fig. 1. Identification of ANN parameters 
using sensitivity equations approach 

In order to show the distinct steps of the technique, 
the main structural blocks of the procedure are 
shown in Fig. 1. The differential equations system 
for mass balance can be written in the following 
generalized form: 

( ( ), ( ), ( ( ), ))d t t y t
dt

=
y f y x q w , (2.1)

where f is a nonlinear vector function of the system 
inputs x(t), outputs y(t), and biochemical reaction 
rates q(y(t),w), part of which we assume to be 
represented by means of an artificial neural 
network(s). 
In order to train the neural network part of the 
hybrid process model, pairs of input/output data 
vectors, as measured at the real plant are to be used. 
The training requires that the ANN weights w 
should be determined in such a way that the sum of 
the squared deviations, J, between the output data yi 
predicted by the hybrid model and the corresponding 
process data yi,exp becomes minimal: 

i
i i,exp

in n

J ( - ) min∂∂
= →

∂ ∂∑ yy y
w w

 (2.2)

The usual way to minimize J is to use gradient 
methods for adapting of ANN weights: 

n+1 n
n

J =    -  g  ∂
∂

w w
w

, (2.3)

where g is again factor ,determined by experience. 
By forming the derivative of J with respect to w, we 
find 

n n n

d
dt

∂ ∂ ∂ ∂
= +

∂ ∂ ∂
y f y f

w y w w
 (2.4)

Hence, for ANN identification, it is necessary to 
determine the derivatives ∂yi/∂wn. In the hybrid 
system, however, system outputs y are different 
from the outputs of the neural network, therefore a 
training of ANN with application of conventional 
backpropagation technique is impossible. One of the 
possibilities to efficiently solve the problem is the 
application of the sensitivity equation approach 
described in [11]. In order to calculate gradients 
∂yi/∂wn  it is necessary to differentiate equation (2.1) 
with respect to weights wn, leading to 

n n n

d
dt

∂ ∂ ∂ ∂
= +

∂ ∂ ∂
y f y f

w y w w
 (2.5)

Eq. (2.5) is a differential equation for the unknown 
gradients ∂y/∂wn required in the ANN training 
algorithm. The initial condition at time t = 0, 
necessary to solve the equation (2.5), is known to be 

( 0) 0y
w

∂ =
=

∂ n

t  (2.6)

When the specific rate expressions q are represented 
by feedforward ANN, the matrix ∂f/∂wn can be 
readily computed by using the standard 
backpropagation method. This fact makes ANN 
attractive for mapping of specific reaction rates q. In 
this hybrid modeling structure, the ANN is trained 
directly on the original concentration data (off-line 
measurements). It is not necessary to calculate 
derivatives of the smoothed concentration values as 
in the differential approximation technique. The 
training procedure for the combined system of the 
ANN and the mass balance equations can be 
regarded as an optimization procedure that 
minimizes the deviations of the estimated values of 
the process variables from the measured ones. 
 
The general procedure of solving the ANN training 
problem is: 
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1. Set up of the mass balance eq. (2.1). 
2. Choosing the structure and initial 
weights of ANN. 
3. Establishing the sensitivity eqs. (2.5). 
4. Integrating the sensitivity equations and 
determining ∂y /∂wn. 
5. Making use of ∂y/∂wn  in the same way as with 
classical ANN for single example learning or batch 
learning. 
 
In order to reduce training time for different 
applications, it can be carried out with a 
combination of the classical backpropagation 
technique and a conjugate gradient optimization 
method. In order to achieve better extrapolation 
properties of the ANN, the cross validation 
technique during the ANN training procedure must 
be used. The concept of cross validation is that after 
training using a given sample of data (“training set”) 
the quality of the process representation is evaluated 
using a different set of data (“validation set”). The 
root mean square error (RMSE) between predicted 
and measured outputs in the “validation set” is 
referred to as the “validation error”. 
Since these modeling and identification procedures 
are relative simple, they additionally simplify the 
quick adaptation of the model to changing process 
conditions. This is why these techniques are so 
attractive for industrial applications. 
 
 
3   . Hybrid model and sensitivity 
equations 
As an accompanying example of a complex 
biochemical process a biosurfactant production 
process was taken. The biosurfactant production 
process in Azotobacter vinelandii 21 fed-batch 
culture, its materials and methods, and the structure 
of the corresponding process hybrid model is given 
in more details elsewhere [9]. Investigations of 
biosurfactant production by various microorganisms 
indicate that biosynthesis of biosurfactant is highly 
influenced by the sources of carbon, nitrogen and 
phosphorous [6, 7]. Hence, besides the dynamical 
models for biomass and product concentrations, the 
most important process variables that influence the 
biosurfactant biosynthesis process are 
concentrations of the above components of nutrient 
media therefore should be modeled. Additionally, 
one should pay special attention to the biomass 
specific growth rate that proved to have significant 
influence on the product formation rate. Some 
negative inhibiting influence of the biosurfactant 
concentration on its specific production rate was 

also observed in the experimental data. Finally, the 
culture broth weight in bioreactor should be 
modeled in order to be able to account for mass 
flows into/out of the bioreactor during the operation 
in a fed-batch mode. 
Based on the above considerations, the following 
system of mass balance equations was build: 

V
xFFxsx

dt
dx

bs )(),( 1 +−= μ  (3.1)

V
pFFxsspq

dt
dp

bsp )(),,,( 32 +−= μ  (3.2)

V
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dt
ds fi

s
i

bspis
i ,

, )(),( ++−−= μ ,

3,...,1=i

(3.3)

s b smp
dV F F F
dt

= + − , (3.4)

where x, p, si are concentrations of biomass, 
biosurfactant and substrates (i is number of substrate 
component taken into consideration), respectively; V 
is volume of culture broth in bioreactor; μ, qp, qsi are 
the specific rates of biomass growth, biosurfactant 
production and substrate components consumption, 
respectively; Fs is feed rate of substrates 
(manipulated variable); sif are substrate component 
concentrations in feeding solution; Fb is base 
feeding rate for pH control purposes, Fsmp  is 
sampling rate; and t  is time. 
Identification of structure of functional relationships 
for the specific rates μ, qp, qsi of biochemical 
reactions was based on analysis of experimental data 
[9]. 
The specific biomass growth rate is a function of the 
principal substrate glucose (component s1) and the 
biomass concentrations x. The following functional 
relationship was found to be adequate for prediction 
the biomass growth dynamics [1]: 

( ) xk
kssxk

s
xs xx

ix

−
++

= 2
11

1
max1 , μμ , (3.5)

where μmax, kx, ki, kxx are model parameters. 
The specific biosurfactant production rate qp is 
related to the biomass growth dynamics (μ) and the 
concentrations of biosurfactant and substrate 
components. Due to complexity of the functional 
relationship qp (μ, p, s2, s3) it is expressed by a 
feedforward sigmoid artificial neural network 
(ANN) containing 4 inputs, 2 nodes in a hidden 
layer, and 1 output (Fig. 2). Taking into account the 
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bias values the ANN results in 13 free tunable model 
parameters. 
The following substrate components are considered 
to be essential for biosurfactant production: 
ammonia nitrogen concentration (s2) and phosphate 
phosphorus concentration (s3). The Pirt type 
functional relationship [1] is applied for modeling 
the specific rate of the glucose consumption: 

( )1
1

s
xs

q m
Y

μ μ= + , (3.6)

where Yxs, m are the model parameters. The 
identified values of the parameters in the equations 
(3.5, 3.6) are given elsewhere [9]. 
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bias 1 bias 2
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 p
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Fig. 2. Structure of the ANN for modeling of 
biosurfactant specific synthesis rate 
 
Due to a priori unknown type of nonlinearity of 
functional relationships the specific consumption 
rates of the ammonia nitrogen (qs2) and phosphate 
phosphorus (qs3) are also modeled by means of 2 
ANNs containing 2 inputs (μ and qp), 2 nodes in 
hidden layer and 1 output respectively. Taking into 
account the bias values, each of the two ANNs 
results in 9 free tunable model parameters. 
 
Additionally to the hybrid model differential 
equations, the corresponding sensitivity equations 
for the training of the ANNs were built. E. g., in 
order to train the ANN of the biosurfactant 
biosynthesis rate, the following steps were 
performed. 
In case of specific biosurfactant synthesis rate 
modeling, the equation of interest is eq. (3.2), the 
right hand-side of which is the element of vector 
function ( ( ), ( ), ( ( ), ))f y x q wt t y t , where p(t) 

corresponds to y(t), Fs(t) – to x(t), and qp(t) – to q(t). 
w is the vector of weights of an ANN. 
With respect to eq. (5), the sensitivity equations for 
the ANN weights of biosurfactant specific synthesis 
rate can be written in the following way: 

n n n

d p f p f
dt p

∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂w w w
, (3.7)

where 

2 3( , , , , ) ( )p n s bq p s s F Ff x
p p V

μ∂ +∂
= −

∂ ∂

w , (3.8)

and 

2 3( , , , , )p n

n n

q p s sf x
μ∂∂

=
∂ ∂

w
w w

, (3.9)

which can be calculated in a straightforward way for 
the ANN of the structure, known in advance. 
Finally, the sensitivity equations system is: 

2 3

2 3

( , , , , )
(

( , , , , )( ))

p n

n

p ns b

n n

q p s sd p x
dt p

q p s sF F p x
V

μ

μ

∂∂
= −

∂ ∂

∂+ ∂
− +

∂ ∂

w
w

w
w w

(3.10)

In the same way, the sensitivity equations for the 
other 2 ANNs are established. 
 
 
4   Software implementation 
The main aim during the creation of the software 
tool for model based identification and optimization 
of biotechnological processes was to ensure the 
maximal flexibility and user-friendly environment. 
The process model was implemented using the 
elements from the standard and extensive user-
defined libraries for Matlab (The MathWorks, Inc.) 
Simulink environment together with the embedded 
Matlab functions. The created user-defined libraries 
consist of the biotechnology and biochemistry 
specific expressions for modeling of specific 
reactions rates, mass balance equation systems and 
flows. By simple “dragging and dropping” one can 
add necessary blocks from the libraries to the model. 
The GUI was programmed using Matlab guide and 
allows to flexibly and efficiently change and manage 
model and identification algorithms specific options 
and settings without going deeper into the script 
programming details. The numerous identification 
methods and algorithms were implemented using 
standard Matlab functions and subroutines. 
Additionally, part of the software tool was 
programmed using m files and compiled C code. 
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The latter part, once created, does not need to be 
frequently changed by user. 
 

 
 
Fig. 3. Software implementation of the hybrid model 
and its identification procedure in Matlab Simulink 
environment 
 
Fig. 3 depicts a typical screenshot of the software 
tool, consisting of the created fed-batch 
biosurfactant production process model and some 
additional windows that allow setting various model 
and algorithm specific options and settings, such 
like numeric integration method and its accuracy, 
identification method, number of iterations, desired 
absolute error and relative tolerance, etc. 
The sensitivity equations approach analyzed in this 
paper was implemented using Matlab function 
LSQCURVEFIT for solving non-linear least squares 
problems using Jakobi matrix. 
The model for fed-batch biosurfactant production 
process was implemented using software tool briefly 
described before. The mechanistic part of the model 

(eqs. 3.5, 3.5) was realized using the blocks from 
user-defined library of kinetic expressions, mass 
balance equations (3.1-3.4) and sensitivity equations 
system (3.10) – using DEE modules, ANNs for 
specific ammonia nitrogen (s2) and phosphate 
phosphorus (s3) consumptions rates – using standard 
ANNs of a given structure, ANN for specific 
biosurfactant production rate qp (μ, p, s2, s3) – using 
embedded Matlab function (see Fig. 3). 
 
 
5   Results and discussion 
The identification using sensitivity equations 
approach was performed for the already described 
ANNs. It was made using the data from the 
“training" experiments and shows good modeling 
quality (see Fig. 4). The lowest modeling quality in 
both “training” and “validation” experiment sets was 
reached for ammonia nitrogen and phosphate 
phosphorus concentrations. This can be explained by 
the fact that not all the influencing factors were 
taken into account while modeling these specific 
reaction rates. In future investigations, it will be of 
advantage to improve the model with respect to 
these factors. It is also necessary to stress that the 
validation results show good modeling quality of the 
main state variable – biosurfactant concentration. It 
was comparable with the accuracy of the reference 
analytical measurement techniques and does not 
show any systematic deviations.  
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Fig. 4. Hybrid model identification results: training (left column) and validation experiments (right column) 
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Additionally, it is important to compare and to state 
that the applied identification technique was 
significantly faster (in an order and more, depending 
on the choice of the initial ANNs weights values) as 
compared to the evolutionary programming 
approach used in [3, 9] and led to the comparable or 
better modeling accuracy. As possible disadvantage 
of the sensitivity approach a necessity of additional 
differential sensitivity equations can be noted. I. e. 
having 6 (in the analyzed example) main differential 
equations for state variables one needs to add and 
simultaneously to integrate significantly higher 
number of sensitivity equations (in the analyzed 
example 13, 9 and 9 equations for each ANN 
respectively). Another drawback of the 
LSQCURVEFIT routine is the fact, that the 
calculation of residuals over the experiments and 
variables is performed within the routine and the 
relative over-/underweighting of particular 
experiment or variable is rather complicated, but 
possible. 
 
 
6   Conclussions 
The calculation results have proven that the 
presented approach for hybrid model identification 
is robust and efficient. In combination with the 
developed flexible and user-friendly software tool it 
allows to quickly and efficiently perform a 
parameter identification of complex hybrid models 
for biochemical processes. 
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