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Abstract: Over the last decade has been a lot of interest in new types of computable machines, due partly over
the fears on conventional, classical, computing. Research by leading physicists, mathematicians and computer
scientists has shown quantum computers could be the future, as they may be able to solve some computationally
difficult problems much faster than is currently possible on a classical computer. David Deutsch has already created
a working model for a quantum computer, the quantum Turing machine or QTM Deutsch [1985]. This has been
proved as a model for computation on a quantum and has allowed algorithms to be developed. Deutsch-Josza’s
algorithm, as all known quantum algorithms that provide exponential speedup over classical systems do, answers a
question about a global property of a solution space. This paper describes the generalization of the Deutsch-Josza
algorithm to n d-dimensional quantum systems or qudits.
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1 Introduction
A qudit is a general state in a d-dimensional Hilbert

space Hd i. e. |Ψ〉 =
d−1∑
m=0

cm |m〉 , which reduces to

|Ψ〉 = c0 |0〉+ c1 |1〉 , for the qubit case space.
An n-qudit is a state in the tensor product Hilbert

space. The computational basis of H is the orthonor-
mal basis given by the dn classical n-qudits:

|m1〉 ⊗ |m2〉 ⊗ ...⊗ |mn〉 = |m1m2...mn〉 (1)

where 0 ≤ mn ≤ d− 1.
The general state in H is a superposition:

|Ψ〉 =
∑

Ψm1m2..mn |m1m2...mn〉

where | |Ψ||2 =
∑ |Ψm1m2..mn |2 = 1.

We say Ψ is decomposable when it can be written
as a tensor product of qudits:

|m1m2...mn〉 = |m1〉⊗|m2〉⊗...⊗|mn〉 =
n⊗

i=0
|mi〉 = |m〉

where |mi〉 is a general state in a d-dimesional
Hilbert space for one qudit.

1.1 The Deutsch-Jozsa problem for n-qudits
The algorithm Deutsch-Josza are generalize Deutsch
algorithm and the function is: f : {0, 1, ..., d −
1}n −→ {0, 1, ..., d− 1}.

Taking matters the fact that exist n-qudits as input
data, we put a global problems if the function f(x) is
constant or balanced. If the function will be balanced,
then mean that the entire exit will be 0 for exactly half
of the inputs.

Classic speacking that represent the evaluation of
the function f(x) for much more that half of inputs,
because we must see with certitude when the function
is balanced and when is constant.

Figure 1: Quantum circuit to solve the Deutsch-Jozsa
problem for n-qudits

Let us analyze this circuit now.
1. First we need to apply Hadamard gates H ,

to register with n qudits. We can now apply the
Hadamard operator to each qudit of the product state:

H⊗n |m〉 = H⊗n(|m1〉 ⊗ |m2〉 ⊗ ...⊗ |mn〉) =

= H⊗n |m1〉 ⊗H⊗n |m2〉 ⊗ ...⊗H⊗n |mn〉 (2)
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In general, the Hadamard operator acting on a sin-
gle qudit of dimension d is defined as:

H |x〉 =
1√
d

d−1∑

y=0

(−1)x·y |y〉 (3)

However, we generalize the latter to H⊗n the no-
tation pays off since the above form can immediately
be generalized by summing over all possible combina-
tions of qudit basis states, i.e., over all n-qudit states

H⊗n |x〉 =
1√
dn

n∑

i=0

d−1∑

yi=0

(−1)xi·yi |yi〉

where

xi · yi = x1y1 + x2y2 + ... + xnyn

For register with n qudits, the equation (3) be-
come:

(
1√
dn

n∑ d−1∑

y1=0

(−1)x1·y1 |y1〉)⊗

⊗(
1√
dn

n∑ d−1∑

y2=0

(−1)x2·y2 |y2〉)⊗

...⊗ (
1√
dn

n∑ d−1∑

yn=0

(−1)xnyn |yn〉) =

=
1√
dn2

n∑
[(

d−1∑

y1=0

(−1)x1·y1 |y1〉)⊗

⊗(
d−1∑

y2=0

(−1)x2·y2 |y2〉)⊗

...⊗
d−1

(
∑

yn=0

(−1)xnyn |yn〉)] =

=
1√
dn2

n∑

i=0

(
n−1⊗
i=0

d−1∑

yi=0

(−1)xi·yi |yi〉) =

=
n−1⊗
i=0

[
1√
dn

n∑

i=0

d−1∑

yi=0

(−1)xi·yi |yi〉] = |Ψ1〉

More generally, given |Ψ〉 =
n−1⊗
i=0

|Ψi〉, where

each |Ψi〉 ∈ Hd, the state H⊗n |Ψ〉 can be computed
in linear time by:

H⊗n |Ψ〉 =
n−1⊗
i=0

H |Ψi〉

2. In next step of the Deutsch-Josza algorithm, we
should evaluate the Uf operator effect. The operation
of Uf gate is completely defined by its action on the
computational basis for each qudit:

|x〉 |y〉 Uf−→ |x〉 |y ⊕ f(x)〉
where |x〉 and |y〉 ∈ {|0〉 , |1〉 , ..., |d− 1〉} denote

the state of control and auxiliary qudits.
Using Uf operator, we now transform the n-

qudits of the upper lines and 1-qudit of the lower line,
as:

[
n−1⊗
i=0

(
1√
dn

n∑

i=0

d−1∑

xi=0

(−1)zi·xi |xi〉)]( 1√
d

d−1∑

y=0

(−1)t·y |y〉) Uf−→

[
n−1⊗
i=0

(
1√
dn

n∑

i=0

d−1∑

xi=0

(−1)f(x)(−1)zi·xi |xi〉)]

(
1√
d

d−1∑

y=0

(−1)t·y |y〉) = [
n−1⊗
i=0

(
1√
dn

n∑

i=0

d−1∑

xi=0

(−1)f(x)+xi·zi |xi〉)]·

·[ 1√
d

d−1∑

y=0

(−1)y·t |y〉] = |Ψ2〉

3. Finally we apply another H⊗n transform to
obtain:

|Ψ3〉 =
n∑

[
n−1⊗
i=0

(
1√
dn

n∑

i=0

d−1∑

xi=0

(−1)f(xi)+xi·zi |xi〉)]·

·( 1√
d

d−1∑

y=0

(−1)y·t |y〉)

We measure the probability amplitude of xi =
|mi〉⊗n.

For constant f(xi), the sum over xi is indepen-
dent of xi and xi · zi must also be equal to zero and
hence (−1)xi·zi+f(xi) is either−1 or +1 for all values
of xi, where −1 holds for f(xi) = 1 and 1 holds for
f(xi) = 0.

In this case the amplitude for xi = |mi〉⊗n is:

n⊗(±
d−1∑

xi=0

1√
dn

) = ±1

since |Ψ3〉 is normalized to 1 and the amplitude of
xi = |mi〉⊗n already gives probability 1, there can be
no other component in |Ψ3〉, all other amplitudes must
be zero. Hence when we measure the first n qudits in
the query register, we will obtain a zero (|0i〉⊗n .
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If f(x) is balanced then (−1)xi·zi+f(xi) will be
+1 for some values of xi and −1 for other values of
xi. The amplitude of the all states xi = |mi〉⊗n is
then:

n⊗(+
d−1∑

xi1
=0

1√
dn
−

d−1∑

xi2
=0

1√
dn

) = 0

where xi1 is the set of xi’s such that the function
f(xi) has a plus sign and xi2 is the set of xi’s where
f(xi) has a minus sign.

We say that f has a balanced parity when an even
value for exactly half of xi and a odd value for the
other half.

2 Conclusion
The above quantum circuit resolves deterministically
the Deutsch-Jozsa problem performing a single appli-
cation of Uf , while for the classical case it is neces-
sary (in the worst case) dn+1 + 1 applications of f to
assure that f is constant or balanced (f must be cal-
culated with different entrances until finding two dif-
ferent values or until calculating the half plus one of
the values). Because the complexity of an algorithm is
measured by the complexity of the worst case, the de-
terministic classical solution to determine if f is con-
stant or balanced has an exponential complexity, while
the quantum algorithm to solve the same problem has
a polynomial complexity.
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