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Abstract: - This paper handles the problem of detecting signals with known form and structure and unknown or 

random amplitude and phase in the presence of compound-Gaussian noise with known spectral density in remo-

te sensing systems. The generalized detector (GA) based on the generalized approach to signal processing 

(GASP) in noise is investigated in [1]–[5]. The structure of the GA detector is independent of the disturbance 

amplitude probability density. Based on this result, the threshold setting, which is itself independent on both the 

noise distribution and the signal parameters, ensures a constant false alarm rate (CFAR). The detection perfor-

mance analysis shows that the GA detector outperforms the optimum Neyman-Pearson (NP) receiver and the 

conventional square-law detector. 
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1   Introduction 
This paper deals with a detection of signals with 

known form and unknown amplitude and phase emb-

edded in non-Gaussian noise that is characteristic of 

any remote sensing system. Non-Gaussian processes 

play a central role in statistical signal processing bec-

ause of the often-dominant effects of this type of noi-

se and interference in several situations like clutter, 

man-made, and natural environment noise and under-

water acoustics, electromagnetic, remote sensing and 

acoustic scattering. Unlike the Gaussian disturbance, 

such a noise is impulsive in that it is characterized by 

significant probabilities of large interference levels. 

Among the marginal probability distribution densiti-

es that have been found appropriate for modeling im-

pulsive noise, we quote the generalized Gaussian, the 

generalized Cauchy, and the contaminated normal, 

which in turn subsumes Middleton Class-A univaria-

te probability distribution density [6]. In radar and 

sonar applications, for instance, in remote sensing sy-

stems, the amplitude probability distribution density 

is commonly used, with particular attention to the 

Weibull and K-distributions [7]–[9]. In the course of 

the theoretical investigations and experimental mode-

ling, we consider the non-Gaussian noise as a comp-

ound-Gaussian process in the form of product betwe-

en a Gaussian, possibly complex, process and a non-

negative stochastic process [10]. Experimental study 

of high-resolution radar systems in remote sensing 

shows that clutter returns within the limits of time in-

tervals of the order of the usual processing time con-

sist of a Gaussian signal modulated by a slowly vary-

ing non-negative stochastic process. The modulating 

signal can be thought constant but random within the 

limits of observation intervals. Similar model was us-

ed in [11],[12] for the atmospheric noise. From a the-

oretical viewpoint, the compound-Gaussian process 

arises from the well-known random walk model whe-

re the noise is given by the sum of a large number of 

contributions. If the number of such contributions is 

modeled as a random variable and its mean value is 

taken arbitrarily large, a generalized form of the cent-

ral limit theorem ensures the conver-gence of the 

sum to a compound-Gaussian variable, [13] and [14]. 

Finally, in the radar detection scenario, the compo-

und-Gaussian model is the most widely accepted and 

experimental verified. We study the performance of 

the GA detector when operating in the compound-

Gaussian noise. Under analysis, we use the approach 

discussed in [15]. In synthesizing the GA detector, 

we use the completely received waveform. 
 

2   Problem Statement 
The detection problem consists of testing the hypoth-

esis 0H , i.e., a “no” signal, versus the alternative 1H , 

i.e., a “yes” signal. Specifically, under the use of the 

GASP in noise we can write [2]–[5]:  
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where ],0[ T is the observation interval; )(tx is the ba-

seband equivalent of received waveform; )(tξ  is the 

baseband equivalent of the noise; )(tη is the addition-
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al (reference) and uncorrelated with the noise )(tξ ba-

seband equivalent of the noise, too, having the same 

statistical parameters as the noise )(tξ , since the no-

ise )(tξ and )(tη are obtained at the input of the GA 

detector from common noise )(tn , in a general case, 

the statistical parameters of the noise )(tξ and )(tη are 

differed, how we can do this is discussed in greater 

detail in [2], [3], and [5]; )(1 tψ is the signature of the 

transmitted pulse; )exp( θα jA=  is the complex (nu-

isance) parameter accounting for propagation and 

scattering effects;θ is the phase of the transmitted si-

gnal. It is known a priori that a “no” signal is obta-

ined in the additional (reference) noise )(tη . The pa-

rameter α is modeled as an unknown parameter if no 

a priori information on its statistics is available; oth-

erwise, it is assumed to be a complex random variab-

le with known distribution law. As to the noise )(tn  

(consequently, the noise )(tξ and )(tη , it is modeled 

as a sample function from a compound-Gaussian pro-

cess with known autocorrelation function; otherwise, 

the noise )(tn can be written in the form ×= )()( ttn µ  

)(tg , consequently )()()( 1 tgtt ×= µξ and )()( tt µη =  

)(2 tg× , in general case, where )(tµ and )(tg are in-

dependent random processes representing the modu-

lating and Gaussian components, respectively. With-

in the limits of the observation interval, the process 

)(tµ can be thought of, for all practical purposes, as 

a random constant so that the overall disturbance 

process degenerates into a Gaussian process with ra-

ndom mean square value, i.e., 

      ; )()( tgtn µ= ; )()( 1 tgt µξ = ; )()( 2 tgt µη =       (3) 

where ].,0[ Tt∈ We assume, with no loss of generali-

ty for situations of practical interest, that the random 

variable µ  has unit root mean square value and that 

)(tg is the base-band equivalent of a wide-sense sta-

tionary bandpass random process (naturally, this sta-

tement is true for )(1 tg and )(2 tg ). We note that the 

processes (3) are closed with respect to affine trans-

formations. In particular, linearly filtering such a pro-

cess yields again a Gaussian process with random ro-

ot mean square value proportional to µ but with diffe-

rent correlation function. Finally, we note that the 

model (3) encompasses Gaussian processes as the 

special case of nonrandom root mean square value.  
 

3   Generalized Detector 
At first, we assume that α is known. This hypothesis 

is not realistic, especially for the radar or sonar prob-

lem in remote sensing systems, but deserves some at-

tention for several reasons. Firstly, if a uniformly 

most powerful test exists, then it does not depend on 

the parameter, and the GA detector is still optimum 

forα unknown. Secondly, if the uniformly most pow-

erful tests exist, the performance of the most power-

ful test is an upper bound on how well any test could 

does. Thus, the performance of the GA detector for a 

perfectly known signal will be used to assess the det-

ection loss of any other receiver The likelihood ratio 

for knownα is the starting point for studying the ca-

ses of both unknown and random α . For the deriva-

tion of the GA detector, we resort to the usual appro-

ach based on projecting the received vector along the 

first M functions of an orthonormal basis and then le-

tting ∞→M . Having chosen =F  ∞
=1)}({ itιψ whose 

first component is the signature of transmitted pulse, 

the coefficients of the expansion of the received wa-

veform according to the GASP [1]–[5] are, 
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where >⋅⋅< , denotes the dot product. Since the noise 

)(tn is white, the coefficients )(iξ and )(iη given µ  

form sequences of conditionally Gaussian, uncorrela-

ted variables having zero-mean and conditional vari-

ances 2

2
0 µN

both for )(iξ and )(iη [5], where
2
0N

is the 

power spectral density of )(tg , (as well as of )(tn  

due to the unit root mean square value of µ ) indepe-

ndently of the basis. Indeed, we used such degrees of 

freedom in choosing, as a basis, a set of complex fu-

nctions whose first term is the signal signature )(1 tψ . 

Therefore, the likelihood ratio can be evaluated as 
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where MX and MY are the vectors containing the first 

M coefficients of the received waveform on the sub-

space spanned by the first M functions of the basis, 

)(
,1| MHM

f XX α
and )(

0| MHM
f YY are the likelihood fu-

nctions for 0H and 1H , respectively. Due to the com-

pound-Gaussian nature of the noise (3) and (4), (5)  
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where )(µf is the probability distribution density of 

the random variable µ . Now, letting in the statistical 

sense 
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and substituting in both integrals of (6) yields 
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The likelihood ratio is now obtained by evaluating 

the limit for ∞→M . We use the result 
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where )(⋅u denotes the unit step function; )(zfM is the 

probability distribution density of a Gamma variable 

with the mean equal to 1 and the variance equal to
M
1  

As M diverges, such a variable converges in mean 

square sense to its statistical average, implying the 

convergence of )(zfM to the delta function )1( −zδ . 

Thus, the likelihood ratio for known signal is 
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wherein ∞Z  is the limit of the sample mean square 

value of difference of the sequences ∞
=2)}({ iiy and 

∞
=2)}({ iix , namely 

      ∑∑
=

−∞→=
−∞→

∞ =
M

i
M

M

M

i
M

M
iiZ

2

2

1
1

2

2

1
1 |)(|lim-|)(|lim ξη (10) 

with mean square convergence. Note that ∞
=2)}({ iix  

and ∞
=2)}({ iiy are the uncorrelated coefficients of the 

projections )(tx⊥ and )(ty⊥ of the received waveform 

orthogonal to the space spanned by the useful signal. 

It can be shown that 
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Thus, ∞Z is the error-free measurement of difference 

of random power spectral densities of the compound-

Gaussian noise )(iξ and )(iη based on the received 

waveform. In conclusion, the likelihood ratio test for 

completely known signal is 

(12)                       ,  ||5.0                          
0

1

11111 ])(),()(),()(),()(),()(),(2Re[

αγ

ψψψψψ θ

+
<
>

∞

− >><<+>><<−><

G
H

H

Z

ttyttyttxttxettx j

 

where Gγ  is the threshold to be set according to the 

desired probability of false alarm FAP . The detector 

based on the test (11) will be called as the generaliz-

ed (GA) detector. Evidently, the test (11) requires av-

eraging infinitely many coefficients. The performan-

ce of the GA detector is an upper bound for any other 

receiver operating under the same signal model and 

in the presence of a compound-Gaussian noise. 
 

3.1   Generalized Likelihood Ratio Test 
When no the uniformly most powerful test exists, a 

suitable procedure to deal with the case of unknown 

parameters is to estimate them under both hypotheses 

and then use these estimates in the likelihood ratio; if 

we resort to the maximum likelihood estimates, the 

corresponding tests is the so-called GLRT [16]. Note 

that the likelihood ratio (11) can be written as 
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where |||| ⋅ is the norm, )(1 tx and )(1 ty are the projecti-

ons of the received waveform along )(1 tψ . Then, as 

in the case at hand, the only hypothesis 1H is compo-

site, and the GLRT is obtained by maximizing the li-

kelihood ratio (13) with respect to α . In other words, 

the GLRT for the GASP is the tests 
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In (14), and throughout the paper Gγ has the same si-

gnificance as in (12), namely, the threshold to be set 

according to the desired FAP . Naturally, its numerical 

value varies since the test statistic is different. Maxi-

mizing the functional on the left-hand side of (14) is 

equivalent to minimizing the square norm at the ex-

ponent of the first factor, which is easily seen to va-

nish for 

                        >=<= )(),(ˆ
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so that the GLRT, after simple manipulations, takes a 

form 
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The detector implementing the test (16) will be refer-

red to as the GA GLRT detector 
 

3.2   Signal with Random Amplitude 
Consider the case of randomα . Assume that the pha-

se θ  is uniformly distributed within the limits of the 

interval ]2,0[ π and the amplitude Ahas a chi distribu-

tion with m2 degrees of freedom, namely 
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The parameter m rules the depth of the amplitude flu-

ctuation, i.e., the lower the shape parameter m is, the 

wider the fluctuation spans. Special cases are 1=m  

and ∞→m . The first case corresponds to the Rayle-

igh-distributed amplitude and the second case corres-

ponds to the nonrandom amplitude. Averaging out 

the phase in (9) yields the likelihood ratio for the ca-

se of signal with random phase and known amplitude 
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where )(0 ⋅I is the modified Bessel function of first 

kind and order zero. The GA detector for random 

energy is obtained by averaging out the amplitude in 

(18), which yields 
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where ),,( zbaM is the confluent hypergeometric se-

ries [17]. Note that only for 1=m , the likelihood re-

duces to an elementary form. In fact, as =),1,1( 2xM  
2xe [17], (21) simplifies to 
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and the generalized detector admits the sufficient sta-

tistic 
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The sufficient statistic (21) is the same as for the GA 

GLRT detector but for a weighting factor and a bias 

term it cannot be further simplified since both the 

scale factor and the bias term in (21) are themselves 

data-dependent quantities (the presence ∞Z ). Similar 

considerations apply also to the general case of (19). 
 

3.3   Discussion 
The GA detectors derived in this section deserve se-

veral comments. Note, that in all of the analyzed ca-

ses, the likelihood ratios are very similar to those de-

rived in Gaussian noise environment [1]–[5] in that 

expressions are the same but for the presence of ∞Z  

instead of the mean square value of the noise coeffi-

cients along this basis. More rigorously, in the comp-

ound-Gaussian environment, ∞Z is the conditional, 

instead of the unconditional, common mean square 

of difference of the noise coefficients. Moreover, un-

like the case of white Gaussian noise, it cannot be ab-

sorbed into the threshold, as it is data dependent. In 

fact, it is evaluated as the limit of the sample mean 

square of difference of the coefficients of the receiv-

ed waveform components )(tx⊥ and )(ty⊥ orthogonal 

to the space spanned by the useful signal. Although 

)(tx⊥ and )(ty⊥ are irrelevant in the case of white 

Gaussian noise with known power spectral density, 

when the disturbance is compound-Gaussian, )(tx⊥  

and )(ty⊥ cannot only no longer be discarded, but 

they are used by the GA detector for measuring the 

random level 2

2
0 µN

of the power spectral density of 

noise according to (11). The GA detector in the case 

of a perfectly known signal, as well as in the case of 

random phase and/or amplitude, requires averaging 

infinitely many coefficients of the observed wave-

form. On the contrary, the GA GLRT detector grants 

a priori a receiver independent of the unknown sig-

nal parameters. In addition, the GA GLRT detector 

turns out to be canonical in that it admits one, and the 

same sufficient statistic, whatever the compound-Ga-

ussian clutter amplitude probability distribution den-

sity is. Precisely, it admits the same test variable of 

the GA detector but for the normalization to ∞Z [2]. 

Remarkably, such a normalization factor ensures the 

constant false alarm rate (CFAR) with respect to the 

clutter amplitude probability distribution density and, 

in particular, to its power. In fact, under the hypothe-

sis 0H the random quantity 2µ factors out from the ra-

tio on the left-side of (16). Therefore, the detection 

threshold depends on the required FAP , but it is other-

wise independent of the non-Gaussian noise distribu-

tion. Finally, the distribution of the test statistic is in-

dependent of the signal phaseθ , either if it is model-

ed as an unknown parameter or as a random variable. 

Consistent estimate can be obtained as the sample 

mean square value of the coefficients )(tx⊥ and )(ty⊥  

A possible criticism against the above GA GLRT de-

tector is that it is not directly implementable, as it 

shares with the GA detector the requirement of the 

perfect measurement of the noise random power spe-

ctral density level. This is not really a drawback, sin-

ce the GA GLRT detector can be closely approxima-

ted by averaging only a finite number 1−M of coef-
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ficients. The resulting estimate of the noise random 

power spectral density level is consistent but no lon-

ger has zero mean square error for finite M . Such an 

approach amounts to implementing the test 
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which converges to the GA GLRT detector as M di-

verges.The receiver implementing the test (21), who-

se diagram is shown in Fig.1, will be referred as the 

M -th order approximation of the GA GLRT (M-GA 

GLRT) detector. The preliminary (PF) and additi- 

 
onal (AF) filters having detuned by central frequency 

characteristics are discussed in more detail in [2]. 
 

4   Performance Assessment 
Note that the probability of detection DP and the pro-

bability of false alarm FAP for the GA detectors are 

discussed in more detail in [2] and [3]. Here we pre-

sent the performance evaluated by Monte Carlo si-

mulations based on DP/1000 and FAP/1000 independ-

ent trials for valuating DP and FAP , respectively. First, 

consider the case of nonrandom signal parameters. 

There is a need to require specifying the marginal 

probability distribution density of the compound-Ga-

ussian noise. We assume a K-distribution that is am-

ong the most credited distributions for radar applica-

tions in remote sensing systems, but the results can 

be extended to other probability distribution densities 

in a straightforward manner. In the case at hand, the 

modulating variable µ  has the chi distribution [15] 

                 0,)(
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where )(⋅Γ is the Eulerian Gamma function, andν is a 

share parameter, whereas the corresponding noise 

amplitude probability distribution density belongs to 

the K family 

0,;0),()()( 1
)(2

|||| 1

1

>≥== −Γ−

+
νννηξ ν

ν
azazKzfzf a , (24) 

where )(⋅νK is the modified second-kind Bessel func-

tion, andα is a scale parameter. The performances of 

the GA (12), GA GLRT (16), and M-GA GLRT (22) 

detectors for some values of M, 410−=FAP , and 5=ν  

are compared, in Fig.2, with the performances of the 

Neyman-Pearson (NP) and square-law detectors. The 

 
comparison shows that the GA, GA GLRT, and M-

GA GLRT receivers largely outperform the NP and 

square-law detectors independently of ν . The loss of 

the M-GA GLRT detector with respect to the GA and 

GA GLRT receivers is defined as the increment sig-

nal-to-noise ratio (SNR) necessary for achieving the 

same detection performance. These losses can be re-

ad off from Fig.2 as the horizontal shift between the 

curves corresponding to the different receivers. Ana-

lysis of the curves shows that the loss of the GA 

GLRT detector with respect to the GA one is at most 

about 1 dB for different values of DP andν ,and it be-

comes less than 1 dB as ∞→ν . As to the loss of the 

M-GA GLRT detector with respect to the GA GLRT 

one, it is nearly independent of the noise shape para-

meter for a given M. For instance, the loss of the 8-

GA GLRT detector is about 1 dB, as can be read off 

from curves of Fig.2. Numerical computation not re-

ported here show that the loss is practically indepen-

dent of the particular value of FAP as well. The effect 

is essentially a shift of all curves toward higher valu-

es of SNR for decreasing values of FAP . Consider 

now the case of random α . Note that in the case of 

the GA, GA GLRT, and M-GA GLRT detectors, the 

FAP is unaffected by the amplitude and phase joint 

probability distribution density since all of them are 

CFAR. Moreover, should only the phase be random, 

then the DP does not change either; in fact, the proba-

bility distribution densities of the test statistics (12), 

(16), and (22) are independent of the signal phase. 

Therefore, the curves of Fig.2 are still valid. In this 
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case, however, the performance of the NP detector 

for known signal is not longer the approximate term 

of comparison. Figure 3 shows the performances of 

the GA, GA GLRT, and M-GA GLRT detectors in 

the case of the useful signal with random parameter 

for 410−=FAP , and 5=ν . Figure 3 refers to ∞→m , 

namely, the case where only the phase is a random 

variable with uniform probability distribution densi-

ty. Figure 3 presents the case where 1=m , namely, 

uniform phase and Rayleigh amplitude. Curves for 

more constrained fluctuation lie between these two 

cases. In the same figure, for comparison purposes, 

the performances of the NP and square-law detectors 

are also reported. The performances of the GA, GA 

GLRT, and M-GA GLRT receivers are not affected 

by the phase distribution. In the case of non-fluctua-

ted amplitude (Fig. 3), the losses of the GA GLRT 

and M-GA GLRT detector in comparison with the 

GA receiver are the same as in Fig.2. 

 
 

In the case of uniformly distributed phase, the loss is 

about 0.5 dB and, hence, much lower than in the case 

of signal with unknown nonrandom parameters. Mo-

reover, the larger ν is, the smaller the loss is because 

the complete ignorance of the phase information res-

ults in poorer performance. In addition, should the 

amplitude be Rayleigh distributed (Fig.3), the perfor-

mances of the GA and GA GLRT detectors would be 

hardly distinguished. The influence of the shape pa-

rameter is analyzed in Fig.3, where the performances 

of the GA, GA GLRT, M-GA GLRT, NP, and square 

-law detectors are reported for 5=ν and still for the 

limit cases ∞→m and 1=m . In the absence of ampli-

tude fluctuation, the loss of the GA GLRT with resp-

ect to the GA detector decreases withν and as ∞→ν  

two curves coincide; as in the presence of Gaussian 

noise, GA and GA GLRT detectors are equivalent [2] 

and [3]. Figure 3 also shows that if the amplitude flu-

ctuates according to the Rayleigh model, the curves 

of the GA and GA GLRT receivers can hardly be di-

stinguished for all values of ν . In other words, at le-

ast for moderately high DP , the performance is ruled 

by the Rayleigh fluctuation law instead of by the noi-

se probability distribution density. The performance 

analysis highlights that the loss of the M-GA GLRT 

detector with respect to the GLRT detector is essen-

tially independent of the disturbance shape parame-

ter, even in the case of Rayleigh fluctuating amplitu-

de. In Fig. 3, the performances of the square-law re-

ceiver are also reported. In addition, in the presence 

of random parameters, the GA, GA GLRT, and M-

GA GLRT detectors largely outperform the NP and 

square-law receivers. The gain is more relevant for 

the case of nonrandom amplitude and for smaller ν . 

Indeed, the performances are ruled by the Rayleigh 

fluctuation law; the larger ν becomes, the lower the 

non-Gaussian nature of the noise will be. 
 

5   Conclusions 
The use of the GASP in the compound-Gaussian no-

ise allows us to design detectors largely outperform-

ing the NP detector for known signal and the square-

law one. The threshold setting does not require kno-

wledge of the SNR but there is a need to average in-

finitely many noise coefficients. The M-GA GLRT 

detector has a completely canonical structure, which 

consists of the GA detector plus a parallel branch ai-

med at computing a difference of the common condi-

tional mean square values of the noise coefficients. 

Interestingly, not only does this processor no longer 

require knowledge of the signal parameters but also 

it achieves CFAR with respect to the noise amplitude 

probability distribution density so that the detection 

threshold can be set once and for all based only on 

the systems parameters. 
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