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Abstract: -Investigations of acute problems of heat and mass exchange accompanied by phase transitions 

need adequate modeling of evaporation, which is extremely important for the curved surfaces in the 

presence of strong heat fluxes. Working cycle of heat pipes is governed by the active fluid evaporation 

rate. Combustion of most widely spread hydrocarbon fuels takes place in a gas-phase regime. Thus, 

evaporation of fuel from the surface of droplets turns to be one of the limiting factors of the process as 

well. In the present paper processes of non-equilibrium evaporation of small droplets were investigated 

theoretically. The rate of droplet evaporation is characterized by a dimensionless Peclet number (Pe). A 

new dimensionless parameter I characterizing the deviation of phase transition from the equilibrium was 

introduced, that made it possible to investigate its influence on variations of the Peclet number and to 

determine the range of applicability for the quasi-equilibrium model. As it follows from the present 

investigations accounting for non-equilibrium effects in evaporation for many types of widely used 

liquids is crucial for droplets diameters less than 100 microns, while the surface tension effects essentially 

manifest only for droplets below 0.1 micron.  
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1   Introduction 

Investigations of acute problems of heat and 

mass exchange accompanied by phase transitions need 

adequate modeling of evaporation, which is extremely 

important for small droplets and sprays [1-4]. 

Combustion of hydrocarbon fuels takes place mostly 

in a gas-phase regime. Thus, evaporation of fuel from 

the surface of droplets turns to be one of the limiting 

factors of the process [5-7]. 

Mathematical models for individual droplets 

evaporation incorporated in polydispersed mixtures 

modeling, are usually based on the assumptions of the 

equilibrium character of phase transitions.
5
 

Comparison of theoretical and experimental data 

shows that this assumption being undoubtedly valid 

for large droplets and flat surfaces, brings to essential 

errors for small droplets [4, 10, 11]. 

The aim of the present study is to develop a 

mathematical model for the non-equilibrium 

evaporation of droplets and to determine the 

applicability limits for the existing quasi-equilibrium 

models. 

2   Mathematical model 

We regard an axis-symmetrical problem in the 

coordinate system with the center coinciding with the 

center of a droplet, the zone Wxx >  occupied by a gas 

mixture, the zone Wxx <<0  - by liquid, 

Wxx = being the phase interface. 

The system of equations for the gas mixture 

above the interface ( Wxx > ) has the form: 
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The system of equations for multi-component fluid 

( Wxx <<0 ) looks as follows: 
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where ρ is density of the mixture; v - velocity; iY  - 

mass concentration of the i-th component; im  - its 

molar mass; iD  - diffusion coefficient; λ  - heat 

conductivity; T - temperature; ∑
=

==
N

i

ipip TYcTch
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 - 

specific enthalpy of the mixture; pic  - specific heat 

capacity of the component at constant pressure; k 

=0,1,2 correspond to the cases of plane, cylindrical 

and spherical symmetry respectively. The specific 

volume for fluid mixture x

N

i

ii VLY ∆+= ∑
=1

1 ρρ� , 

and the specific enthalpy is xi
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where xx hLVL ∆∆ ,  are specific extra volume and 

extra enthalpy for the solution. 

The boundary conditions at phase interface 

Wxx = are: 
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where subscripts g,l denote the values of parameters in 

gas and liquid phases respectively; Lih is the specific 

enthalpy of phase transition. The modified Hertz-

Knudsen equation for non-equilibrium evaporation 

will serve as an additional boundary condition: 
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where iX is the molar concentration of the i-th 

component; ip is the partial pressure of the i-th 

component above the interface; iδ is the 

accommodation coefficient; )( Wi Tp∗
 is the 

equilibrium vapor pressure for the i-th component at a 

temperature WT , which could be determined from the 

Clausius-Clapeyron equation or its simplified 

solutions: 
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The boundary conditions at infinity ( ∞→x ) 

are the following: 

NiYYTT ieie ,...1,, === .                 (11) 

The boundary conditions in the center 

( 0→x ) are: 
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To solve the system (1)-(7) along with the 

boundary conditions  (11)-(12) one needs to pose 

initial distributions for temperature and 

concentrations, which would not contradict the 

boundary conditions. 

3   Unsteady-state solution 

Numerical simulations of evaporation of droplets in 

the atmosphere being the mixture of perfect gases 

was undertaken based on the mathematical model 

(1)-(12). Investigations of a number of substances 

showed that the essentially unsteady-state stage at 

the beginning of the process comes to a quasi-steady 

stage. The solutions based on an equilibrium and 

non-equilibrium evaporation models differ for both 

stages of the process. On decreasing the radius of 

droplets the difference between equilibrium and non-

equilibrium models increases, which agrees 

qualitatively with the conclusions derived from 

experiments [4]. 

 
Fig. 1. Mass flux versus time variation for evaporation of 

freon-11 droplet d=0.5 µm for different initial 

concentrations eY of freon-11 in the atmosphere. 

The results of numerical modelling of freon-11 

droplets evaporation under the condition of 

maintaining constant radius of droplet by 

introducing a necessary source term in the center are 

shown in Fig.1 in the form of the plots of mass flux 

from a unit surface versus time. Accommodation 

coefficient was determined based on the 

experimental results presented in [12]. As it is seen 

from Fig.1 the process comes to a quasi-steady 

regime within several seconds. The results of 

numerical modelling for freon droplets of different 

radii showed that the smaller was the radius - the 
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faster evaporation process came to a quasi-steady 

regime. 

The sensitivity of results on non-equilibrium 

evaporation to variation of droplets radii and other 

parameters brought us to the necessity to search for a 

universal dimensionless parameter, which could 

characterize the deviation of the evaporation process 

from an equilibrium one. To obtain an analytical 

solution we regard the simplified problem of a steady-

state evaporation of a single droplet under non-

equilibrium conditions. 

4   Steady-state solution for non-

equilibrium evaporation 

Regard the steady-state problem of non-

equilibrium evaporation of uni-component uniformly 

heated liquid droplet of a constant radius. The 

governing system of equations takes the form: 
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=∆ for the non-equilibrium 

model of phase transitions, and 0=∆ ip  - for an 

equilibrium one. The boundary conditions at infinity 

( ∞→x ) take the form: 

NiYYTT ieie ,...,1,, === .             (23) 

As it follows from the equation (13) and the 

boundary condition (18) the following integral is 

valid within the gas phase: 
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The equation (15) could be converted into the 

following form 
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which shows that for gases ( 1/ ≈= λρ piii cDLe ) 

the last term in the right hand side of the equation 

could be neglected. 

On introducing the following dimensionless 

variables  
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the system of equations (14), (15) takes the form: 
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Due to our derivations the deviation of the 

process from the equilibrium one could be 

characterized by a dimensionless parameter NI . 

The boundary conditions at infinity ( ∞→z ) 

are: 

.,...,1,,1 NiYieih === χχ          (31) 

Introducing a new variable 
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which varies in the range ( 0,Wξ ) 
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one could transform the equation (26) as follows 
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The solution of (33) is the following: 
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where jj BA , can be determined from the boundary 

conditions.  
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Substituting (35) into the boundary condition (29) one 

obtains the equation determining the dimensionless 

evaporation rate Wξ  or the Peclet number Pe: 
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The last expression for the phase equilibrium function 

could be also substituted by the data from the tables on 

the thermophysical properties of substances [13]. 

The solutions (34) providing flow parameters 

distribution around evaporating droplet then take the 

form: 
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where Wξ  could be obtained from solution (35), (36). 

To determine the )(zξ  function analytically one could 

assume that ρρ /constD = , which could be a good 

approximation for constant pressure problems [6]. 

Then the equalities are valid 
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which neglecting the γ  variation in space provide the 

following formula 

h

eeD

D
χ

ρ
ρ

= .               (37) 

Formula (37) allows to express Peclet number in the 

following way 
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which being substituted into (32) provides an equation: 
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Substituting the solution )(ξχh  and integrating the 

equation (38) one obtains analytical formula 

providing the link between z and ξ  : 
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The set of equations (35), (36) allows to 

determine the unknown Peclet number in non-

equilibrium phase transitions as a function of the 

following parameters: 
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The first six of them characterize the media and the 

boundary conditions. The seventh parameter 

NI characterizes the deviation of the system from the 

equilibrium state. The value NI is zero for the case 

of equilibrium, and it grows remaining 

positive( 0>NI ) with the increase of the deviation 

from the equilibrium. 

5   The role of non-equilibrium effects 

To investigate the influence of non-equilibrium 

effects in phase transitions Peclet numbers for 

droplets evaporation were determined for different 

values of NI parameter (Fig.2). The values of the 

other governing parameters were assumed to be the 

following 

9.0,1

,1.0;1;54.0;75.4

0

0

==Γ

====

heW

Ne

e

L

N

i Y
p

p

m

m

χ

χ
 

The Fig. 2 gives the plots of Peclet numbers, 

obtained within the frames of non-equilibrium 

( nePe ) and quasi-equilibrium ( eqPe ) models. The 

value of Peδ  is also plotted in Fig. 2 to characterize 

the relative deviation of Peclet number from its 

equilibrium value ( eqeqne PePePePe /)( −=δ ). The 

Peclet number for non-equilibrium evaporation 

could be determined by the formula 
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wherein the value of the factorS −Ψ  as a function 

of NI  parameter for the chosen values of other 

governing parameters is shown in Fig. 2. The 

6th WSEAS International Conference on SYSTEM SCIENCE and SIMULATION in ENGINEERING, Venice, Italy, November 21-23, 2007     27



equilibrium Peclet number as obtained from the quasi-

steady solution has the following form: 
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The results of comparison of non-equilibrium 

and quasi-equilibrium Peclet numbers for droplet 

evaporation show that the rate of evaporation strongly 

depends on the value of the parameter NI . On 

increasing NI  Peclet number decreases rapidly as 

compared with the equilibrium evaporation; the 

deviations of the evaporation rates from those 

predicted by the equilibrium model turn to be larger 

and larger. For NI <1 the divergence of equilibrium 

and non-equilibrium solutions Peδ  does not exceed 

4%, for NI =10 the deviations increases up to 25%, for 

NI >100 the deviation surpasses an order of magnitude. 

Thus in order to have adequate estimates for small 

droplets evaporation rate one needs to use the non-

equilibrium model for NI >1. 

 
Fig. 2. Peclet number variation versus IN parameter for 

equilibrium and non-equilibrium evaporation. 

To have adequate data for small droplets 

( 1>NI ) evaporation rates it is necessary to use the 

non-equilibrium model. 

6  Quasi-steady solution for a single 

droplet evaporation 

Investigations of unsteady-state droplet 

evaporation show that for small droplets flow 

parameters in gas phase reach their quasi-steady values 

very quickly. Thus the quasi-steady approximation 

regarding droplet evaporation could be used, which 

means that its radius decreases in time much slower 

than gas flow parameters come to a steady state. Thus 

it is assumed, that the rate of droplet evaporation for 

each time moment could be determined based on the 

obtained steady non-equilibrium solution. Then the 

decrease of the droplet radius can be determined by the 

following formula: 
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equation (41) takes the form 
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where 0Wx is the initial radius, 0t is the characteristic 

time for droplet evaporation under equilibrium 

conditions.  

 
Fig. 3. Droplet dimensionless radius variation versus time 

for different initial values of INe parameter characterizing 

deviation of the system from the equilibrium. 

Fig. 3 presents the comparison of )(τr  

functions (trajectories) obtained for different initial 

values of I parameter (
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characterizing initial deviation of the system from an 

equilibrium state. Increasing the initial deviation 

from the equilibrium brings to a decrease of the 

slope of the curve and increases the actual time for 

droplet evaporation. 

Fig. 4 illustrates the dimensionless mass flux 

from the surface of a droplet  
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as a function of dimensionless radius r (Fig. 4a) and 

dimensionless time τ  (Fig. 4b). It is seen from the 

figures that the values of mass flux provided by non-

equilibrium model have always a final limit on 

0→r . That is the major qualitative difference 

between the non-equilibrium model and equilibrium 

ones. The mass flux reaches its maximum by the end 

of evaporation ( 0→r ). The maximal values of the 

mass flux decrease on increasing the deviation from 

the equilibrium (Increasing I). The time for droplet 

evaporation increases essentially on increasing the 

deviation from the equilibrium.  
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7   Conclusions 

The results of investigation showed that the difference 

between quasiequilibrium and non-equilibrium 

solutions increase on decreasing droplet radius, 

decreasing accommodation coefficient and on 

increasing diffusion coefficient. 

The dimensionless criterion was developed 

characterizing the deviation of small liquid droplet 

evaporation process from the equilibrium, which 

permits to determine applicability limits for 

equilibrium models. 

It was demonstrated that non-equilibrium 

models more adequately describe final stages of 

droplet evaporation. Those models are free from the 

common drawbacks of all quasi-equilibrium models, 

because non-equilibrium approach allows to avoid 

non-physical growth of the evaporation rate on 

decreasing droplet radius. 

Accounting for non-equilibrium effects produces 

an influence on the integral characteristics of droplet 

evaporation process. The lifetime for single 

evaporating droplet could be several times longer 

under non-equilibrium conditions as compared with 

equilibrium ones. 
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Fig. 4. Dimensionless mass flux variation versus 

dimensionless radius (a) and time (b) for different initial 

values of non-equilibrium parameter INe 
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