
Command laws for rockets’ motion stabilisation 
 

ROMULUS LUNGU 

Avionics Department, University of Craiova 

Decebal str. No.5 

romulus_lungu@yahoo.com 

ROMANIA 

MIHAI LUNGU 

Avionics Department, University of Craiova 

Decebal str. No.5 

Lma1312@yahoo.com  

ROMANIA 

NICOLAE JULA 

Military Technical Academy of Bucharest 

ROMANIA 

njula@mta.ro 

COSTIN CEPISCA 

 Electrical Engineering Faculty, University POLITEHNICA of Bucharest 

313 Splaiul Independentei, sector 6 

ROMANIA 

costin@wing.ro   www.electro. pub.ro 
 

 

Abstract: - This paper deals with models of the rockets’ motion around mass centre, command laws of 
vertical and horizontal planes trajectory, stabilisation laws of the roll motion of the rockets and target 
control laws. One also studies the way to choose of the parameters of general command laws which assures 

state variables simultaneous cancellation. Some automatic control systems, using the previous laws, are also 
presented. 
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1 Models of the rocket’s motion 

around mass centre in vertical and 

horizontal planes 
In fig.1 one presents the rocket’s motion ( )A  

around mass centre in vertical plane block diagram, 

with transfer operators, where: θ - the trajectory 
slope in vertical plane, α  - attack angle, V - flight 

velocity, δ - the ribbed deflection in horizontal 
plane (vertical plane command), vT - the time 

constant of A  [1], 
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where δm  - command coefficient, zJ  - inertial 

moment with respect to lateral axis, 
ϑ�

m  - dynamic 

damp couple coefficient, αm  - static stabilisation 

coefficient, ξ  - damp coefficient, 0ω  - proper 

pulsation. 

 
Fig.1 

 
Similar to the block diagram in fig.1, one can obtain 

the block diagram, with transfer operators, in fig.2. 
This block diagram corresponds to the plane’s 

horizontal motion; ;,, θ′→θα′→αδ′→δ the two 

feed-back links are missing here, because of the 
missing of the proportional terms with respect to 

gravitational acceleration ( )g  miss. Thus, transfer 

operator for the horizontal plane motion is 
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2 Automatic command of the flight 

trajectory 
In fig.2 one presents the block diagram, with 

transfer operators, of the automatic control system 

of the trajectory slope ( θ  and θ′ ), where θ  and θ′  
expresses the desired slope angles for the two 

planes (vertical and horizontal); E.E.1 and E.E.2 
are actuators (execution elements) for the 

commands δ  and δ′ , 1U  and 2U  - command 

variables. 
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where θ′−θ′=θ′∆θ−θ=θ∆ ,  and ka, - coefficients 

whose variation domains are presented below. For 
a steady state regime 
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which express command laws of the trajectory for 

two planes (vertical and horizontal). For an 

appropriate choosing of the parameter k , the 

variables θθ∆ �,  and ( )0,0, →θ→θθ→θθ �����  becomes 

simultaneously null. Simultaneously with θ∆ ’s  

cancellation, θ′∆  and ( )0, →θ′θ′→θ′θ ���  becomes 

null. All these statements will be demonstrated 
below for a general case. 

 
Fig.2 

 
 

3 Rocket’s roll motion stabilisation 
For an appropriate precision of the automatic 
control process, rockets with symmetrical 

distribution of the empennage and wings have 

stabilisation and maintaining ϕ  to the zero value 

systems. Under disturbances action, the rocket may 

rotate around its longitudinal axis. Thus, the 
vertical and horizontal channel may interfere, the 

control errors increases [1], [2]. The systems in 

fig.3 and in fig.4 assures simultaneous cancellation 

of the variables ϕϕ �,  and ϕ�� . The command law for 

the system in fig.3 is the following one 
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Fig.3 

 
Command law for the system in fig.4 is equivalent 

to the one given by Eq. (7); a supplementary phase 

coordinate 0z is introduced [1]. 

Thus, if Mx TT → ( xT - time constant of the rocket’s 

motion around longitudinal axis, while MT - model 

time constant), then the variable becomes 
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where sxc kkk =  and 
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Fig.4 

 
From the equation that expresses the rocket’s 

motion around its longitudinal axis 

                            ecx UkT =ϕ+ϕ ���                          (11) 
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it results 
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Comparing equations (10) and (12), it results 
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Thus, command law (7) becomes 
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The variables ϕϕϕ ��� ,,  and 0z  simultaneously tend to 

zero. 
 

4 Rocket’s flight trajectory command 

and roll motion stabilisation 

Such a control system is the one in fig.5. Command 

laws are 

                                 ,
2

θ∆
θ

=θ
�

�� k                            (15) 

                            ( ) ,
θ∆
θ

θ′∆=θ′
�

� ak                       (16) 

                               .
θ∆
θ

ϕ=ϕ
�

� bk                          (17) 

The angular variables θ′θϕϕ ��� ,,,  simultaneously tend 

to zero together with θ∆  and ( )., θ′→θ′θ→θθ′∆  

 
Fig.5 

 

5 Rocket’s flight trajectory command 

and target control 
The structure of such a system is presented in fig.6, 

where mδ  is the engine input command signal, r - 

the distance from A to T  (target).  
Command laws are (5), (6) and 

                             .
θ∆
θ

=
�

� ckrr                              (18) 

For ϕ  and ϕ�  cancellation, a supplementary law 

(17) is needed. 

 
Fig.6 

 

 

6 Command laws analysis  
One considers the variable ,z  which describes the 

equation 

                               ( ),, zzfz ��� =                            (19) 

where f  has such a chosen form in order to z��  

tends to zero when fzz ;0== �  may have the form 

zzkf /2
�=  and, consequently, equation (19) 

becomes [3] 
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where k  is a non-dimensional proportionality 

coefficient . 
Integrating equation (20), one obtains 
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where )0(),0( 00 zzzz �� ==  and ft - time moment 

when the three variables become null. If one 

chooses 1>k , then the time interval till the three 

variables become null is very big and if one 

chooses 2/1≤k  then, if ,ftt →  2z  tends to zero, 

while z� (linear) tends to zero with a big slope 

0

0

2

1

z

z�
[1]. If one chooses 








∈ 1,

2

1
k one obtains some 

changes. Thus, for ,3/27,0 ≅=k one observes that 
3z  tends to zero, 2z�  tends to zero, while z��  tends to 

zero (with a slope equal to 2/3) [3]. 

The laws (5), (7) have the form (20), where z is θ∆ , 

for equaation (5), respectively ϕ  for Eq. (7). 
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Another command law, correlated with (19), has 
the form  

                             ( ),,, zzqgq �� =                           (22) 

which may be chosen [3] 
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with const.=a  Integrating (for ( ) 00 zz =  and 

( ) 00 qq = ) it results the equation 
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which expresses the fact that q  and z  are 

simultaneously null, together with q� and .z�  

The laws (6) and (16), (17), (18) have the form 

(23), where z is .,, rϕθ′∆  

Other command law’s forms are presented in [4] 

and [5]. 
 

 

7 Conclusion 
The author starts from the models of rocket’s 

motion around mass centre in vertical and 
horizontal plane and around longitudinal axis. 
Different structures of automatic command and 

stabilisation of the rocket’s motion, using control 
laws that assure simultaneous cancellation of some 

state variables, are also presented in this paper. 
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