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Stabilization models and structures for move of very maneuverable
flying objects
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Abstract: - One presents a dynamic model of the very maneuverable flying objects (A), which expresses the
dependence between the vector formed by angles of A regarding aerodynamic trihedron and the vector of
angular velocities of A or the vector of linear acceleration components with respect to the trihedron related to
A. Also, leading structures (stabilization of movement) are presented. These are made by control loops after
angles, angular velocities and linear accelerations and an adaptive control loop with neuronal network for
dynamic inversion errors compensation of the non-linear function which describes unknown system of the
dynamic model of A. Adaptive command is projected upon stability theory using a Liapunov function.
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1 Introduction

The A’s movement control takes into account the
values of the A’s angles regarding aerodynamic
trihedron and angular velocities and accelerations
sensors utilization (placed on trihedron axis related
to A). Dynamic model is made by two sub-systems:
one of them is described by a well known non-linear
function (f;) and the other is described by a

proximate known or unknown non-linear function

(/).

Control law synthesis is based on dynamic
inversion (the f, inversion). The control law has
components expressed as functions of state variables
and an adaptive component. This is obtained with a
neuronal network with the role of f, inversion error

compensation.

The control and stabilization of A’s movement in
non-linear description are closely to real flight
conditions than the linear variants. The learning
capacity of the neuronal networks in control of the
non-linear systems is taken into account.

2 Spatial movement models of the
flying objects

The following equations express dependences

between linear accelerations a,a,,a, and angular

velocities o ,0,,0, regarding with trihedron related

to flying machine A. These variables are available
because of the accelerometers and gyrometers.

Let oxyz be the trihedron related to A with ox -
the longitudinal axis, oy - the lateral axis and oz

rectangular to ox and oy and ox,y,z,



aerodynamic trihedron; V' is the flying velocity, o -
attack angle, B - side-slip angle (fig.1). For ox,y,z,
and oxyz superpose the following coordinates

transformations are made
B “

0X, Y02y — 5o > OXu V20—l > OXVZ.- (1)
Acceleration a is expressed with formula
a=V+oxV, @)
with
a=a.+a,+a., 3)
6=0. 40, +o.~(d+f) @)

Fig.1

From equation (2) one obtains

I R0 T TR PR N C)
Through projection on ox,y,z, axes one obtains

[a{\ coso—a, sin(90” +0L)]COS|3+ a,sinf= v, 6)
[aK coso—a, sin(90° +0L)]sin(90° +B)+ a,cosf = —[cov‘ sino—®, cosa +B]V,
’(‘13 sin oL —a, cos on): [mK cosa—m, sin(90” +0L)]V sinB—(mJ —d)cosB»VA

V =(a, cosa +a_sina)cosf + a,sinf,

. . —a,sino+a,cosa

a=w, —(cox cos o + o, sin oc)tg[3+ = z , 7
’ V cosP

. ) (a,coso +a, sino)sinP — a,cosfp

B=o,sina— o, cosa —— v .

To these one adds the moments equilibrium
equations

.M,
o, =—=,
T
M
O, =—> +[1—J‘“‘]wxwz, ®)
I w

where M M M. are the aerodynamic moments

which operate round ox,oy,0z axes.
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M, =M'B+ M0 +M>o, + M2, + M5,

M, =Ma+M" 0, +M"5, 9

M, =MB+ Mo, + Mo, +M>5, + M5, ;
the coefficients of the angular variables represent
variation speeds (slopes) of the aerodynamic
moments regarding to respective angular variables
(stability derivates).

Equations (7) and (8) are used especially in the
case of very maneuverable aircrafts and in the case
of agile rockets with big attack and side-slip angles.
For a very good control of the agile air — air rockets’
inclination, in [1] and [2] an aerodynamic roll angle
is used; it verifies equation

. _©,cosa+o, sina L a,sino—a,coso op (10)
cos B
and the angular variables are grouped in the vectors
xX'=[a B y],wrz[cox o, wz]. (11)

The second and the third equation (7) and
equation (10) may be expressed under the vectorial
form

x=T(x)co+af., (12)

where
—cosatgl 1 -—sinatgf
T(x) = sin o 0

cosa/cos O sina/cosf

—cosa. |,

—a, sina+a, coso (13)
V cosf
(a, cosa+a, sina)sinp — a, cosf
. V .
a,sina—a, coso
vV

a,=|-

tgp

Equation (12) is equivalent with the following
equations system, in which a component u_ of the
pseudo -command is distinguished [3]

i=u u, =T(x)o+a,. (14)

Similarly, equation system (8) may be described
by equations in which another component u, of the
pseudo-command is distinguished

o=u,,u, = f(z0,3)5" =[5, 5, 8] (15)

Function f has two components, as we can see

from (8) and (9)
u, = flx,®,8)= F(x,0)+G-3; (16)
[ MPB+ M0, + M®o, ]
JVX
£ Mot Mo, [ J (17)
F=|F |= ——— = 4 1-= o0, ,
! J, J, )
F 2 2y
O MBEMO0 + M [ J j
z z X z z 4| ]2 O)XO)V
JW 2z ’
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M; 0 Ms,
XX JXX
3
o 0 Mo, | )
J,
M (; M
J, J,

In the particdlar case of longitudinal move
(0, =, =B =0) equations (7) and (8) becomes

d:wy_‘_aXsinoc—azcosa’d)y:ﬂ’ (19)
V cosf J,
where
o oy, 3
M, =Mjo+M o, +M]/S,. (20)

As a consequence x=a,0=0,, T(x)=1 and

a,= (a,sino—a, cosa)/V cosP; equation  (12)

becomes
a=ow,+a,, 21
and equations (14), (15) and (16) becomes
G=u,u, =0, +a; (22)
b, =u,,u, =f(V,H,oc,wy,5p); (23)
fV.Ho00,.8,)=FV Haoo, )+G-5, (24)
with
o @y 3y
F=F, = Mo+ M, o, ,G= M, : (25)
Jyy pag

From (14) one results
o, =T" (x)(ux - af), (26)
where u, is the pseudo-command, which may be
chosen
u, =K X,x=x-x, (27)
with x - leading command. From (16) one obtains
8, =G (u, —F.)=f(x,0,u,), (28)

with pseudo-command
uo=K o=u,-u,, (29)
where ® =0, —® and u, -the adaptive command

for inversion error’s compensation.

3 Stabilization structures for flying

objects’ movement

Control block scheme of the closed loop system
is presented in fig.2.

Another control structure may be obtained using
stability theory with Liapunov functions if the
leading object (A) may be described by the non —
linear equations system [2]

X, :fl(xl)"'hl(xl)xz >
X, = fz(xlaxza”)a

used by the system from fig.3.

(30)

Aa i
A

| ©.0 =%
+ ES

®.® :Z“W

The impose vector X, is
)_‘2:‘11(7‘1’0- (31)
This law must assure the stability of the variable %,
regarding variable z (fig.3);
X, =% -x :ql(zl’t)_XZ' (32)
The second sub-system (described by the second

equation (30)), in the lack of the external
perturbations, may be described by equation

xz :vav:f‘Z(-xlaxz’u)a (33)
where error v is a pseudo-command. If the function
f, is invertible than the dynamic inversion of £,
may be approximately done; u = f,"(x,,x,,v). If £,
is known than f,'f, =1 and if it is approximately
known than the inversion of function f, is made
with error &(x,,x,,u) and the first equation (33)
becomes

%, =v+e(x,x,,u)+ p, (34)
where ¢ has the form

s(xl,xz,u):fz(xl,xz,u)—/}z(xl,xz,u):8(?1,)72,}1,}1,\/), (35)
with £, - calculated function.

The command law may be chosen as [2]
v=u, +X, +v-u, =K,%, +x, +v-u,, (36)

where u, - the command in case f,'f, =1, K, -
positive define matrix and u, - adaptive command
for the inversion error compensation ¢, obtained
from the Sigma neuronal network;

u, =W'oly"1) (37)
with o - the activation function of the hidden layer
(2), I -the input vector,

w' =l w v =l v (38)
b, and ¢, - bias, w, - the weights of connections

between level 1 and 2, v, - the weights of

)
connections between level 2 and 3.
Learning rule is obtained using stability theory
of Liapunov [2]. Considering Frobenius norm of
matrix A

4]} = wrla” 4} (39)

introducing the compact matrix

w0
z{o V}, (40)



with ||Z||F <Z, choosing the input vector of the
neuronal network

= w s s 5 Wl |7,] @D
and standard Liapunov function

V=S5 E e el T W) el T ) @2)

from stability analysis one obtains the term v from
(36)
Z, +ZE[+ Rl @3)

where K, >0 and e, =%, /%,

v=K.(

The control system structure (PA-A) is presented
in fig.3 (equivalent to the one from fig.4, where v is

u,).

©.0 Eg} =

0.0 o}

4 Conclusion

One presents some equivalent forms of models
for A’s movement as functions of A’s angles related
to aerodynamic trihedron, of angular velocities and
linear accelerations.

Stabilization structures have some control loops
after angles, angular velocities and linear
accelerations and a control adaptive loop using a
neuronal network for dynamic inversion error
compensation of non-linear unknown function from
model A. The adaptive command synthesis is based
upon Liapunov function.
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