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Abstract: - An e-Learning platform together with its users may be seen as an Educational Network. Within 

such an Educational Network there are issues like: low reliability, unacceptable time response or bad resource 

management. The usual protocol between clients (users) and server (the e-Learning platform itself) is HTTP. 

This stateless protocol uses only request/response type interactions between clients and server. For 

improvement of afore mentioned issues there was built a module that gives the “intelligent” character of the 

Educational Network. This module records user performed actions, levels of data traffic and other performed 

activities in an attempt to solve or improve presented issues. The enforced mechanisms use state of the art 

machine learning  algorithms, mathematical modeling and dynamic structures management, giving thus the 

intelligent character of the educational network. 
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1   Introduction 
The ever increasing demand for higher bandwidth, 

new applications and new protocols, as well as 

certain operations and manageability requirements 

of educational networks ask for transport 

technologies which ideally fulfill certain 

requirements. Scalability should range from Gbit/s 

to Tbit/s total capacity, per-channel bit rate should 

range from several Mbit/s to 40Gbit/s today with 

100Gbit/s on the horizon and service flexibility 

should range from Fast Ethernet via Gigabit 

Ethernet (GbE) and 10GbE to OC-768 PoS and 

ultimately 100GbE in the future. Distances ranging 

from intra campus requirements to thousands of 

kilometers and management concepts (e.g. 

centralized management, distributed GMPLS control 

plane) are requirements that should be currently met 

in educational networks. 

There was designed and developed an e-Learning 

platform called Tesys [1]. This platform has 

implemented facilities for following type of users: 

system administrators, secretaries, professors and 

students. Some activities implemented for students, 

like downloading course materials or taking tests or 

exams are sometimes very heavy regarding the 

computational load of the server and the data traffic 

transfer to and from the user.  

This paper presents the structure and functionality of 

an Expertise Module (EM) that runs along the Tesys 

e-Learning platform. The main purpose the EM is to 

provide the intelligent character for the educational 

network implemented by Tesys. The functionality of 

the EM module is presented in Figure 1. 

 
 

Figure 1. General structure of Educational Network 

 

As presented in Figure 1 the input of EM is 

represented by data traffic data. The data are 

obtained by a custom implemented logging 

mechanism embedded within the platform’s 

business logic. The platform is represented by the 

setup put in place in order to perform all necessary 

activities within the e-Learning process. The setup 

consists of course materials, test and exam quizzes 

that are set up by course managers and the overall 

setup performed by secretaries. 

The data traffic is saved into structured format and 

after that it is fed to the Expertise Module. Once the 

EM is initialized, it can provide data back to Tesys 

e-Learning platform in the form of a response to 

specific requests. Within EM, there are two 

problems that are addressed.  

One refers to employed business logic within the 

Expertise Module. This problem is considered from 

two points of view. One is from the point of view of 

the general architecture of EM and the other is from 

the point of view of analysis process itself. 
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Figure 2. Detailed functionality of Expertise Module and integration with Tesys e-Learning platform 

 

The second problem refers to the architecture of EM 

as a service. Once the EM has been instantiated it 

will work as a service for Tesys  e-Learning 

platform. Under these circumstances the Intelligent 

Educational Network  is represented by the 

combination of the Tesys platform and the Expertise 

module. 

The activity of a student is seen as a sequence of 

sessions. A session starts when the student logs in 

and finishes when the student logs out. A session is 

represented by a sequence of actions. The next 

figure presents the activity diagram from platform 

point of view. Within the platform each student has 

an associated activity diagram. 

 

 
Figure 3.  Activity diagram for students 

 

In the diagram it may be seen the activity of all s 

users (U1,, U2, …, Us). The activity of each user is 

composed of a number of sessions. User Us in the 

diagram has ms associated sessions. At finest level, 

a session is composed of a number of actions, 

session Sms has mn associated actions. In a session, 

the first action is to login and the last one is logout. 

After one hour of inactivity the user is automatically 

logged out such that user sessions can be precisely 

determined. The notion of “user session” was 

defined as being a temporally compact sequences of 

Web accesses by a user. A new distance measure 

between two Web sessions that captures the 

organization of a Web site was also defined. The 

goal of Web mining is to characterize these sessions. 

In this light, Web mining can be viewed as a special  

case of the more general problem of knowledge 

discovery in databases. 

Still, in performed experiments there were taken into 

consideration heavy traffic sessions. In this light, a 

session becomes more or less a time interval in 

which a user performs many requests as a part of a 

certain e-Learning activity. For example, taking a 

test is a heavy traffic session. Within a session there 

may be many heavy traffic sessions. For such 

sessions there was monitored the quantity of 

transferred data, the duration of the session and 

other information regarding that session like the user 

who performed the actions and the accessed 

resources. This data represent the raw data that is 

used as input in the analysis process. 

Under these circumstances, a more detailed 

functionality diagram of Expertise Module is 
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presented in Figure 2. The EM is basically an 

application that functions as a service for Tesys e-

Learning platform. Its main goal is to decrease the 

response time of the platform by caching data in an 

intelligent way, increase reliability and provide 

efficient resource management. The intelligent 

feature of caching is given by the mechanisms 

implemented within the EM: clustering, 

mathematical modeling and data caching.  

The Expertise Module has as input the data traffic 

data and the data from the database.  

All these data populates the users-data traffic-

activity table. All data regarding users represent 

features (parameters) that define each instance 

(user). The instances enter a clustering process such 

that students with a high degree of similarity are 

grouped together. The data traffic transferred within 

each cluster is mathematically modeled and needed 

data is inserted into a cached data structure. The 

logic implemented in Cached Data Structures 

Access Logic is also responsible for interfacing with 

the business logic of the platform. The 

communication is accomplished in a client-server 

architecture. When the business logic of Tesys needs 

specific data it firstly sends a request to Expertise 

Module and more exactly to Cached Data Structures 

Access Logic. If requested data is not found than 

classical way of obtaining it is used. 

There are many different ways for representing pat-

terns that can be discovered by machine learning. 

From all of them we choose clustering, which is the 

process of grouping a set of physical or abstract 

objects into classes of similar objects [2]. Basically, 

for our plat-form we create clusters of users based 

on their activity and data traffic. 

As a product of clustering process, associations 

between different actions on the platform can easily 

be inferred from the logged data. In general, the 

activities that are present in the same profile tend to 

be found together in the same session. The actions 

making up a profile tend to co-occur to form a large 

item set [3]. 

There are many clustering methods in the literature: 

partitioning methods such as [9], hierarchical 

methods, density-based methods such as [6], grid-

based methods or model-based methods. 

Hierarchical clustering algorithms like the Single-

Link method [4] or OPTICS [5] compute a 

representation of the possible hierarchical clustering 

structure of the database in the form of a 

dendrogram or a reachability plot from which 

clusters at various resolutions can be extracted, as 

has been shown in [7]. From all of these we chose to 

have a closer look on partitioning methods. 

After creating clusters of users based on their 

activity and transferred data, the data traffic 

transferred within each cluster is taken into 

consideration by Mathematical Modeling Module 

which in fact estimates the value of H Parameter. As 

a matter of precaution the mathematical modeling 

starts only when clustering process has reached a 

certain level of accuracy. Mathematical Modeling 

module will estimate three plots: R/S plot, Variance-

Time plot and the Periodogram plot. Once the value 

of H parameter is over a threshold (e.g. 0.8) data 

may be cached into the Cached Data Structures. This 

is the place where important data is stored and is 

ready to be accessed by Tesys e-Learning platform. 

The Cached Data Structure implements a dynamical 

data structure used for managing in main memory 

the data that is available for deployment through the 

Tesys e-Learning Platform. For implementing this 

structure there are used AVL trees [8,9]. A AVL tree 

is a self-balancing binary search tree. In an AVL 

tree the heights of the two child subtrees of any node 

differ by at most one, therefore it is also called 

height-balanced. Lookup, insertion, and deletion all 

take O(log n) time in both the average and worst 

cases. Additions and deletions may require the tree 

to be rebalanced by one or more tree rotations. 

 

2   Tesys e-Learning Platform 
The main goal of the application is to give students 

the possibility to download course materials, take 

tests or sustain final examinations and communicate 

with all involved parties. To accomplish this, four 

different roles were defined for the platform: 

sysadmin, secretary, professor and student.  

The main task of sysadmin users is to manage 

secretaries. A sysadmin user may add or delete 

secretaries, or change their password. He may also 

view the actions performed by all other users of the 

platform. All actions performed by users are logged. 

In this way the sysadmin may check the activity that 

takes place on the application. The logging facility 

has some benefits. An audit may be performed for 

the application with the logs as witness. Security 

breaches may also be discovered. 

 

2.1 Main Functionalities and Architecture 
Secretary users manage sections, professors, 

disciplines and students. On any of these a secretary 

may perform actions like add, delete or update. 

 These actions will finally set up the application such 

that professors and students may use it. As 

conclusion, the secretary manages a list of sections, 

a list of professors and a list of students. Each 

discipline is assigned to a section and has as 

attributes a name, a short name, the year of study 

6th WSEAS International Conference on EDUCATION and EDUCATIONAL TECHNOLOGY, Italy, November 21-23, 2007     239



and semester when it is studied and the list of 

professors that teach the discipline which may be 

maximum three. A student may be enrolled to one or 

more sections. 

The main task of a professor is to manage the 

assigned disciplines while s discipline is made up of 

chapters. The professor sets up chapters by 

specifying the name and the course document. Only 

students enrolled in a section in which a discipline is 

studied may download the course document and take 

tests or examinations. Besides setting up the course 

document for each chapter, the professor manages 

test and exam questions. 

Tesys application offers students the possibility to 

download course materials, take tests and exams and 

communicate with other involved parties like 

professors and secretaries.  

Students may download only course materials for 

the disciplines that belong to sections where they are 

enrolled. They can take tests and exams with 

constraints that were set up by the secretary through 

the year structure facility.  

Students have access to personal data and can 

modify it as needed. A feedback form is also 

available. It is composed of questions that check 

aspects regarding the usability, efficiency and 

productivity of the application with respect to the 

student’s needs. 

 The e-learning platform consists of a framework on 

which a web application may be developed. On 

server side we choose only open source software 

that may run on almost all platforms. To achieve this 

goal Java related technologies are employed. In 

figure 2 we present the most general view of the 

software architecture from MVC point of view. 

 

 
Figure 4. MVC architecture of the Tesys e-Learning platform 

 

This architecture of the platform allows 

development of the e-learning application using 

MVC architecture. This three-tier model makes the 

software development process a little more 

complicated but the advantages of having a web 

application that produces web pages in a dynamic 

manner is a worthy accomplishment. The model is 

represented by DBMS (Data Base Management 

System) that in our case is represented by MySQL.  

 

2.2 Data Traffic Logging Mechanisms 
In this part we shall focus on describing the 

monitoring capabilities of the platform when 

running. The platform implements two ways of 

monitoring activity. Since business logic is 

implemented in Java, the log4j utility package was 

chosen to be used in order to log specific events. 

The next lines present how the utility was set up. 

log4j.appender.R.File=D:/Tomcat/idd.log 

log4j.appender.R.MaxFileSize=1000KB 

log4j.appender.R.MaxBackupIndex=5 

These lines state that all the logging process will be 

done in idd.log file and will have a maximum file 

size of 1000KB in maximum five files.  

This utility package is also used in debugging 

process and the logs may be very useful in finding 

security breaches like unsuccessful attempts to log 

in or run actions that are not allowed. 

The main disadvantage of this technique is the semi 

structured way in which information is stored. This 

makes the information retrieval and analysis to be 

not so easy.  

The second method of monitoring user activity 

within the platform is through a database table 

called activity. In this table a record is added each 

time a user performs an action. In the next table it is 

presented the structure of activity table. 

 
Field Description 

id primary key 

userid identifies the user who performed the action 

date stores the date when the action was performed 

action stores a tag that identifies the action 

details stores details about performed action 

level specifies the importance of the action 

 
Table 1. Structure of activity table 

 

The details field stores specific information 

regarding the action that was executed. For example, 

if a secretary modifies the profile of a student in the 

details field there will be stored information about 

what fields were updated.  

The level field specifies the importance of the 

executed action. There are defined three level of 

importance: 0,1 and 2 where level 0 specifies the 

critical actions.  

So far, in activity table there are close to 40,000 

recorded actions in almost four month of running the 

platform. At the end of the cycle there are expected 

almost 100,000 recorded actions. 
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3 The Expertise Module 
 
The Expertise Module implements the classical 

steps of classical clustering presented in figure 5 

[10]. Clustering produces initial categories in which 

values of a data set are classified during the 

classification process. 

 From all clustering algorithms categories we chose 

to have a closer look on those that use partitioning 

methods. Firstly, k-Means algorithm is taken into 

consideration since is  simple and straight forward. 

That is why fuzzy C-means algorithm was 

employed. The procedure follows the standard 

knowledge discovery [10] but is accustomed for our 

specific situation. 

 

 
  

Figure 5. Steps for clustering process 

 

k-Means algorithm works for a database of n objects 

and k, the number of clusters to form, a partitioning 

algorithm that organizes the objects into k partitions 

( k<n ), where each partition represents a cluster. 

The clusters are formed to optimize an objective 

partitioning criterion, often called similarity 

function, such as distance, so that objects within a 

cluster are “similar”, whereas the objects of different 

clusters are “dissimilar” in terms of database 

attributes. So, the first step is to define a list of 

attributes that may be representative for modeling 

and characterizing student’s activity.  

 The classic k-means algorithm is a very simple 

method of creating clusters. Firstly, it is specified 

how many clusters are being thought: this is the 

parameter k. Then k points are chosen at random as 

cluster centers. Instances are assigned to their 

closest cluster centre according to he ordinary 

Euclidean function. Next the centroid, or the mean, 

of all instances in each cluster is calculated – this is 

the “means” part.  These centroids  are taken 

to be the new centre values for their respective clus-

ters. Finally, the whole process is repeated with the 

new cluster centers. Iteration continues until the 

same points are assigned to each cluster in 

consecutive rounds, at each point the cluster centers 

have stabilized and will remain the same thereafter 

[3]. From a different perspective for a cluster 

there may be computed the following parameters: 

n

xxx n+++
=

...21µ  , the means 

 ( ) ( ) ( )
1

...
22

2

2

1

−

−++−+−
=

n

xxx n µµµ
σ , the standard 

deviation 

p, the probability 

 The sum of all probabilities for all clusters is 1. If 

we know which of the distributions each instance 

came from, finding the parameters is easy. On the 

other hand, if the parameters are known finding the 

probabilities that a given instance comes from each 

distribution is easy. Given an instance x , the 
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 The EM algorithm takes into consideration that we 

know neither of these things: not the distribution 

that each training instance came from, nor the 

parameters µ, σ or the probability. So, we adopt the 

procedure used for the k-means clustering algorithm 

and iterate. Start with initial guess for the five 

parameters, use them to calculate the cluster 

probabilities for each instance, use these 

probabilities to estimate the parameters, and repeat. 

This is called the EM algorithm for “expectation-

maximization”. The first step, the calculation of 

cluster probabilities (which are the “expected” class 

values) is “expectation”; the second, calculation of 

the distribution parameters is “maximization” of the 

likelihood of the distributions given the data [3]. 

 Although the EM algorithm is guaranteed to 

converge to a maximum, this is a local maximum 

and may not necessarily be the same as the global 

maximum. For a better chance of obtaining the 

global maximum, the whole procedure should be 

repeated several times, with different initial guess 

for the parameter values. The overall log-likelihood 

figure can be used to compare the different final 

configuration obtained: just choose the largest of the 

local maxima [3]. 
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Within the Expertise Module the mathematical 

modeling is accomplished by estimating the self-

similarity and long-range dependence character of 

data traffic [12, 13 and 14]. A process is considered 

to be self-similar if Hurst parameter satisfies the 

condition: 

10,0,0)()( <<>>=
−

HatatYatY
H  

where the equality is in the sense of finite-

dimensional distributions. A second definition of 

self-similarity that is more appropriate in the context 

of standard time series, involves a stationary 

sequence  }1),({ >= iiXX . Let 

,...2,1,)()/1()(
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It is not possible to use the definition to check 

whether a finite traffic trace is self-similar or not. 

Instead different features of self-similarity such as 

slowly decaying variances are investigated in order 

to estimate the Hurst parameter H.  

Parameter H can take any value between 1/2 and 1 

and the higher the value the higher the degree of 

self-similarity. For smooth Poisson traffic the value 

is H=0.5. There are four methods are used to test for 

self-similarity. These four methods are all heuristic 

graphical methods, they provide no confidence 

intervals and they may be biased for some values of 

H. The rescaled adjusted range plot (R/S plot), the 

Variance-Time plot and the Periodogram plot, and 

also the theory behind these methods, are described 

in detail by Beran [15] and Taqqu et al. [14]. Molnar 

et al. [16] describes the index of dispersion for 

counts method and also discuss how the estimation 

of the Hurst parameter can depend on estimation 

technique, sample size, time scale and other factors. 

The Expertise Module has also implemented the 

logic responsible for managing the data that is to be 

retrieved to Tesys platform at request. In this 

prototype implementation there were implemented 

the basic operations on the AVL tree structure: 

insertion, look-up and deletion. 

The reason for choosing the AVL tree data structure 

is because it has the advantage of being simpler to 

implement than other self-balancing binary search 

trees, such as red-black trees or multiway  trees like 

B-trees or T-Trees while their average-case 

performance is just as efficient.  

Since the implemented operations are the classic 

ones the node structure has an very important role. 

Table 2 presents the structure of a node from the 

AVL tree structure.  

 
Field Description 

activityId key-identifies the performed activity 

metaInfo meta information regarding the performed 

activity 

userId identifies the user who performed the actions 

within the session 

date stores the date when the actions were 

performed 

data stores the data 

 
Table 2. Structure of node from the AVL tree 

 

The activityId field is the key of the structure. 

Whenever a user starts performing a specific activity 

than this activity is looked-up in the Cached Data 

Structure. The metaInfo field holds information 

specific to performed actions. For example, in the 

case of a DOWNLOAD action in the metaInfo field 

there will be stored information regarding the time 

duration of the session, the average data traffic 

speed in bytes/second and data about the assets 

involved (file names, sizes, locations, etc.) The 

userId field is a foreign key that identifies the user 

who performed the actions within the heavy traffic 

session. The date field records when the actions 

were performed and the data field holds the 

important data that is to be retrieved to Tesys e-

Learning platform at request. 

The managing is performed by Cached Data 

Structure Access Logic. This business logic 

interfaces with Data Model Logic for insertion and 

with the logic of Tesys for look-up and deletion. 

Whenever a call for look-up data within the Cached 

Data Structure this is accomplished firstly according 

to activityId field. Once the correct activity has been 

identified than the metaInfo field is inspected. When 

the needed data matches regarding the looked asset 

the data is then retrieved to Tesys e-Learning 

platform for deployment. 

 

4   Experimental Results 
The study started by setting up the Tesys e-Learning 

platform. This means that all the learners, course 

managers and secretary accounts have been created 

and the platform was populated with data: course 

materials, test and exam questions. 

This platform is currently in use and has three 

sections and at each section, four disciplines. 

Twelve professors are defined and more than 650 

learners. At all disciplines, there are edited almost 

2500 questions. In the first month of usage, almost 

500 tests were taken. In the near future, the expected 

number of learners may be close to 1000.  

Recording learner’s activity under these 

circumstances provides great information regarding 

user traffic. After six month of usage, there are more 

than 40,000-recorded actions.  

Once the platform was up and running the Expertise 

Module started receiving data regarding users, user’s 
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traffic and user’s performed actions. As presented, 

each user represents an instance for the clustering 

process and is represented by a set of parameters.  

 After the parameters (features) have been set they 

are computed. In Figure 5 this step is named Feature 

Selection and produces the Data for process. Data is 

represented by the whole history of all users which 

may be found in relations of the database (e.g. 

activity, exam results, test results, messages, etc.) 

and in semi structured log files.  The Feature 

Selection will produce the set of instances 

(sometimes called points) that will represent the 

input for Clustering Algorithm Selection. Depending 

on algorithm a number of clusters is obtained each 

instance being assigned to one or more clusters. 

 Validation of results produces the final clusters that 

implement the model. The validation procedure has 

two main outcomes: firstly it proves the correctness 

of results for current dataset and gives an idea of 

how the model will perform on new data. 

 In the next paragraphs there will be described in 

detail the whole process of knowledge discovery. 

Everything starts with the data from the database of 

the e-Learning platform.  

 The database of the platform contains 21 relations. 

Among the most important ones are: user, role, 

userrole, usersections, sections, questions, 

testquestions, exam-questions, test-results, exam-

results, messages and activity. 

 The preparation gets data from the database and puts 

it into a form ready for processing of the model. 

Since the processing is done using machine-learning 

algo-rithms implemented in Weka workbench [11] 

and custom implementation, the output of 

preparation step is in the form of an arff file. Under 

these circumstances, we have developed an offline 

Java application that queries the platform’s database 

and crates the input data file called activity.arff. This 

process is automated and is driven by a property file 

in which there is specified what data/attributes will 

lay in activity.arff file.  

 The most important step in this procedure is the 

attribute selection and the granularity of their 

nominal values. The number of attributes and their 

meaning has a cru-cial importance for the whole 

process since irrelevant attributes may degrade 

classification performance in sense of relevance. On 

the other hand, the more attributes we have the more 

time the algorithm will take to produce a result. 

Domain knowledge and of course common sense are 

crucial assets for obtaining relevant results.  

 For a student in our platform we may have a very 

large number of attributes. Still, in our procedure we 

use only three: the number of loggings, the number 

of taken tests and the number of sent messages. Here 

is how the arff file looks like: 

@relation activity 

@attribute nLogings {0,<10,<50,<70,<100,>100} 

@attribute nTests{0,<10,<20,<30,<50,>50} 

@attribute noOfSentMessages 

{0,<10,<20,<30,<50,>50} 

@data 

<50,<10,<10, 

<50,<20,0, 

<10,<10,0, 

 As it can be seen from the definition of the attributes 

each of them has a set of five nominal values from 

which only one may be assigned. The values of the 

attributes are computed for each of the 650 students 

and are set in the @data section of the file. For 

example, the first line says that the student logged in 

less than fifty times, took less than ten tests and sent 

less than ten messages to professors. 

In order to obtain relevant results we pruned noisy 

data. We considered that students for which the 

number of loggings, the number of taken tests or the 

number of sent messages is zero are not interesting 

for our study and degrade performance and that is 

why all such records were deleted. After this step 

there remained only 268 in-stances.  

 Running the EM algorithm from Weka package 

created three clusters. The procedure clustered 91 

instances (34%) in cluster A, 42 instances (16%) in 

cluster B and 135 instances (50%) in cluster C. The 

following table shows in which cluster the instances 

belong after running the EM algorithm. 

 
Instance Cluster 

A 

Cluster 

B 

Cluster 

C 

1 1 0 0 

2 1 0 0 

3 0 1 0 

……. … …. … 

268 0 0 1 
Table 2. Distribution of instances after EM algorithm 

 

For estimation of Hurst parameter there was chosen 

a 3 hours interval, between 18:00 and 21:00 which is 

considered to be a heavy traffic period. 

The interval from 18:00 to 21:00 was chosen for 

close analysis. The R/S plot estimated H parameter 

to a value of 0.89. The time-variance plot showed a 

slope of -0.320 which means a value of H of 

1+slope/2=0.84. The IDC (Index of Dispersion for 

Counts) shows an H parameter of 0.88. In 

Periodogram plot there may be observed a value of 

H = 0.85. These methods do not obtain exactly the 

same values but values are over 0.5 which is a good 

indication of traffic’s self-similarity. Having in mind 
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that non-stationary traffic may be easily taken as 

self-similar stationary traffic there were also 

examined smaller intervals of time bins. H 

parameter was estimated for each of the 6 intervals 

of 30 minutes between 18:00 and 21:00. In this way, 

there was estimated H parameter for three hours 

from a complete interval of 24 hours.  

The fact that traffic is found to be self-similar does 

not change its behavior but it changes the 

knowledge about real traffic and also the way in 

which traffic is modeled. It has lead many [17] to 

abandon the Poisson-based modeling of network 

traffic for all but user session arrivals. Real traffic, 

well described as self-similar, has a “burst within 

burst” structure that cannot be described with the 

traditional Poisson-based traffic modeling. 

After another three month of running the Cached 

Data Structure reached a number of almost 800 

nodes and a size of almost 250 MB. From this point 

we started to study how response time is influenced 

by the employed architecture. There was build a 

mechanism that performed two requests virtually at 

the same time: one for normal retrieval of data from 

the hard drive and one that looked up for the data 

within the cached data structure. The results are 

good, especial at subsequent similar requests, due to 

time locality of data. Table 3 presents the obtained 

results for three situations. 

 
Activity meta info Normal 

access 

time 

retrieval 

Cached 

access 

time 

retrieval 

Difference 

DOWNLOAD materieId = 7 

courseId=5 

chapterId=3 

size=5MB 

 

0.9 s 

 

0.78 s 

 

-13.3% 

DOWNLOAD materieId = 10 

courseId=1 

chapterId=2 

size=3MB 

 

0.8 s 

 

0.67 s 

 

-16,25% 

DOWNLOAD materieId = 6 

courseId=3 

chapterId=5 

size=0.9MB 

 

0.6 s 

 

0.65 s 

 

+8.3% 

 
Table 3. Experimental measurements – comparison between normal 

access and cached access 

 

The experimental results showed in general a 

decrease in access time. Still, there are some 

situations then the response time is greater when the 

response is delivered through  Expertise Module. 

This is the situation when the overhead introduced 

by auxiliary logic of  Data Retrieval Module is 

greater that the normal retrieval. The worst-case 

time situation showed an overhead  of 35% over the 

normal access while best-case time situation showed 

an improvement of 30%. The average-case 

performance shoed a general decrease in access time 

retrieval of 13.5 percent. 

 

4 Conclusions 

 
This paper presents an Expertise Module that runs 

along an e-Learning platform and whose goal is to 

decrease the access time of users to assets, increase 

reliability and enhance resource access and 

management. This module was divided into three 

levels of analysis: clustering, mathematical 

modeling and  data caching. The first level creates 

clusters of students based on their performed 

activities and transferred data traffic. At this level 

there is used EM clustering algorithm implemented 

by Weka system. The user clustering process 

produced three clusters of users.  

The mathematical traffic  modeling was performed 

on data obtained for users that belong to a certain 

cluster. Once the clusters are created the data traffic 

transferred by students that belong to a cluster of 

students is analyzed for self-similarity. 

Mathematical modeling estimates the self-similarity 

of data traffic. This is accomplished by heuristic 

graphical methods: R/S plot, variance-time plot, 

IDC plot, periodogram plot. The analysis is 

performed rigorously for a three hours interval, from 

18:00 to 21:00 but also for the whole day. 

All the analysis follows a proposed analysis process 

that has as input data regarding executed actions and 

transferred bytes within the platform and has as 

output estimates of the Hurst parameter.  

Values found for Hurst parameter are very 

promising. All calculations showed values above 0.7 

and many times above 0.8 which indicate a good 

level of self-similarity. 

The differences regarding Hurst parameter are due 

to estimation method, bin size and point of time. 

When this characteristic is met than the data is 

inserted into the cached data structure represented 

by a dynamic structure, more precisely an AVL tree.  

The Expertise Module provides data for Tesys e-

Learning platform from the AVL tree as requested.  

A AVL tree structure is used as caching data 

structure. This is mainly performed to obtain data in 

timely manner.   

The Expertise Module has been tested on data 

obtained from the e-Learning platform on which 650 

learners were enrolled and had activity for six 

month. The results are satisfactory and prove that 

the Expertise Module can be successfully used in an 

e-Learning process for decreasing the time response. 
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The Expertise Module is planned for running on the 

same e-Learning platform (same disciplines and 

same test and exam questions) but on different set of 

learners. This may lead to further and continuous 

improvement of the system.  

The Expertise Module may also run near other 

evaluation environments in order to decrease the 

time response. Within each module there may be 

used different machine learning techniques or data 

structures such that different setups may be tested. 
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