
A Generation Approach of Transformation Code for Web Interchanging

Documents

Le-Le Tang1, Fu-Yang Peng1
1
Beijing Institute of System Engineering, 100101, Beijing, China

leletang@126.com

Abstract

This paper describes a generation approach of

transformation code for web interchanging documents.

This approach is based on model driven architecture and

model transformation technology. We provide a model

weaving tool named QMTW to define mapping rules

between XML documents. All these rules are stored in a

model named weaving model. A code generator is

provided to read this weaving model and generate target

XSLT code. When mapping rules change, developer only

needs to modify the weaving model and run the code

generator again. Our approach improves the quality of

transformation code for web interchanging documents

and reduces the work of maintenance.

Key words: Model Transformation, Web Application,

UML, Model Driven Architecture, XSLT

1. Introduction

Nowadays, many web systems use XML as the

interchanging format. In the process of data collecting,

transforming and mining, many operations conforming

to some semantics are always added on these XML-

based documents. Under many circumstances, the

results of these operations are temporary and need not

be stored persistently. Therefore, web interchanging

documents are not collected and transformed by

traditional database technology. XSLT is always used

to do these works instead.

Transforming these XML-based data by XSLT is an

effective way, and supported by many tools. However,

writing an effective XSLT code requires advanced

programming skills and good understanding of XML’s

working mechanism. At the same time, writing XSLT

code by hand is an elaborated, error-prone and hard-to-

maintained work. Researchers have realized the

importance of the XML technology and the need for

automatic transformation approaches[1].

Inspired by MDA[2] and model transformation

technology, we propose a model transformation based

approach to generate XSLT code. This approach can

define mapping rules between different XML

documents conveniently, and generate executive XSLT

code based on these rules. It improves the quality and

maintainability of XSLT code, and makes the

programmer’s work easier.

The remainder of this paper is organized as follows.

The next section introduces the related works. In

section 3, we describe the process of our approach

briefly. We provide a case study to demonstrate every

steps of this approach in details in section 4. In the last

section, we point out the future work and give the

conclusions.

2. Related Works

Now that many of us depend on Web-based systems,

they need to be reliable and perform well. To build

these systems, Web developers need a sound

methodology, a disciplined and repeatable process,

better development tools, and a set of good guidelines.

The emerging field of Web engineering fulfills these

needs[3]. In recent years, many researchers in web

engineering domain provide model driven development

approaches for constructing web applications.

In [4], Piero Fraternali and Paolo Paolini describe a

methodology for the development of WWW

applications and a tool environment specifically

tailored for the methodology. The methodology and the

development environment are based upon models and

techniques already used in the hypermedia, information

systems, and software engineering fields. An approach

to support the development of large-scale Web

applications is described in [5]. Large development

efforts have to be divided into a number of smaller

tasks of different kinds that can be performed by

multiple developers. They also implement a tool which

provides a variety of code generators and a mechanism

for checking whether view artifacts are compliant with

the model.

The methods mentioned above demonstrate how to

develop an entire web application, but pay little

attention to web interchanging documents. Our

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 123

approach solves the problem of how to generate

transformation code for web interchanging documents.

3. Model Transformation Approach

We illustrate our model transformation approach for

XSLT code generation in Figure 1.

Execute

Input

Build in

Source

UML Model

Target

UML Model

Source

XML Schema

Target

XML Schema

Source

XML Doc

Target

XML Doc

ConformTo ConformTo

EqualEqual

Weaving

Model

Input

XSLT

Code

XSLT

Engine

Input Output

Code Generator

Input

Generate

Model

Transformation Tool

 Figrue1 Model Transformation Approach

As illustrated in Figure 1, the approach has three

steps. First, we must get the source and target

conceptual model. Second, we define the mapping rules.

At last, we use the code generator to generate the target

XSLT code.

The first problem is how to construct the conceptual

model for XML documents. There are three solutions

for this problem: (i) adopt UML to design XML

schema; (ii) use an extended ER model to design XML

schema; (iii) use a special modeling approach for

XML—AOM(Asset Oriented Modeling)[6].

Considering practicability, we choose the UML as the

modeling technique.

If source XML documents or target XML

documents have not XML schema, we can use UML

tool to build the conceptual models and generate the

XML schema. Otherwise, we can generate UML

models from XML schemas. Some tool such as

hyperModel[7] has the transformation ability between

UML models and XML schemas. In this way, we can

get the source and target model which are UML class

diagrams. Thus the web interchanging XML documents

conform to these UML models.

The second step is to define the mapping rules

between source and target model by a model weaving

tool--QMTW and to store these rules into a weaving

model. Put the weaving model into a code generator,

we can get the target XSLT code.

Pay attention, the weaving model containing the

mapping rules can be stored as the artifact of our

approach. When the mapping rules change, we only

have to change the weaving model, and the XSLT code

can be generated automatically. Next section, a case

study is provided to demonstrate the details.

4. Case Study

4.1 Motivating Example

For example, a web bank system interchanges its

data with a web payment center. The conceptual

models of source and target data are illustrated in

Figure 2. The mapping rules are also included in this

figure.

-name:String -name:String

-age:Int

-id:Int

-balance:Double

-age:Int

-accountList:String

-accountSum:Double

Account

UserInfo

equalLink

equalLink

concatLink

sumLink

Web Bank System Payment Center

User

Figure 2 Source and Target Models

We can see from the figure that the bank system

includes several User objects which contain a name

and an age attribute. Every User object has at least one

Account object which contains an id and a balance

attribute. The payment center system includes several

UserInfo objects which contain name, age,

accountList(this attribute display all available accounts

belong to this user) and accountSum(this attribute is the

sum of all balances in available accounts) attributes.

4.2 Defining Mapping Rules

We have proposed a model weaving tool QMTW

(QVT-Based Model Transformation Weaving

Framework) to define model transformation rules.

Model weaving is a special model transformation

technique which defines the mapping rules as typed

links and generates model transformation code for

these rules. In another word, model weaving is a code

generator of model transformation code.

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 124

The mapping rules in QMTW are represented by

link, every link defines the relation between source

model element and target model element. A link

contains three parts: source model element, target

model element and link type. Every link type has a

corresponding code fragment. OMTW provides a link

type library including many types which can be

selected by user. User can also add customize link type

into the library to fulfill new requirements.

By using QMTW, we define four rules shown in

Figure 2. The description of these rules is listed below:

1. The value of name attribute in class User is equal

to the value of name attribute in class UserInfo;

2. The value of age attribute in class User is equal to

the value of age attribute in class UserInfo;

3. The value of accountList attribute in class

UseInfo is equal to the concatenation of all the

value of id attribute of Account in a User while

removing repeat values (if exist) and adding a ‘/’

between every two values.

4. The value of sum attribute in class UserInfo is

equal to the addition of all the value of balance

attribute of Account in a User.

These rules are represented by four links in QMTW.

The link types are equalLink, concatLink and sumLink

separately.

Source model, target model and all links are stored

in a weaving model which is the input of code

generator.

4.3 Code Generation

There are two steps in code generation process. First,

XSLT code framework including XSL element and

XSL attribute is generated according to the target

model. This work is completed by framework code

generator. The values of XSL attributes are computed

by calling special XSLT templates which will be

generated in next step. The algorithm of framework

code generator is as follows. Considering simplicity,

we only give the algorithm for one package.

From the framework code we can see that the XSL

element and XSL attribute define the objects and

attributes of the target model. But to get the value of

attributes, we need to call some XSL templates such as

$classA_attributeA_linkA template. The bodies of

these templates will be generated and added in the

second step.

The second step is to scan all mapping rules in the

weaving model and to construct the bodies of XSL

templates. Every link type has a code fragment stored

in the link type library. Code generator picks out these

code fragments and configures their parameters to

build entire XSL templates. For example, the code

fragment of sumLink is listed as follows:

By inputting concrete parameters into

$sumLink_name, $srcClass and $srcAttribute, we can

get the XSL template for sumLink. After all these

templates are completed and added into the code

framework generated in the first step, then we can get

the final XSLT code.

<xsl:template name="$sumLink_name ">

<xsl:value-of

select="sum($srcClass/@$srcAttribute)"/>

</xsl:template>

Void GenerateClassCode(Class class)

{

For every Class = classA in Package{

Write <xsl:element> into target code;

For every Attribute = attributeA in classA{

 If attributeA is a primitive type {

 Write <xsl:attrivute> into target code;

 Add other params into code;

 If a rule = linkA is linked with attributeA

 Add <xsl:call-template name=

”$classA_attributeA_linkA”/>

 Write </xsl:attribute> into target code;

 }

 If attributeA is a object of classB

 GenerateClassCode(classB);

}

For every associated Class = classC{

 If classC is aggregated by classA

 GeneratedClassCode(classC);

 If classC is navigated by classA

 Write a <xsl:ref> into target code;

 Add other params into code;

 Write a </xsl:ref> into target code;

}

Write </xsl:element> into target code;

}

}

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 125

4.4 Executing Transformation

When the code generation work is completed, the

XSLT code then can be put in any place user wanted to

transform source XML documents into target XML

documents.

We construct a source XML document to verify

whether the generated XSLT code can work or not.

The source document is as follows:

<User name="TangLeLe" age="28">
<Account id="1001" balance="122.0"/>

<Account id="1002" balance="123.0"/>

<Account id="1003" balance="144.0"/>

</User>

After the transformation work, we get the document

listed below:

<UserInfo name="28" age="TangLeLe"
accountList="1001/1002/1003"

sum="389">

</UserInfo>

By checking the relations between source and target

document, we can see that they conform to the mapping

rules defined in section 4.2.

5. Conclusions and Future Works

The contributions of this paper are: (i) we provide a

special model transformation tool which can define

mapping rules between web interchanging documents

conveniently. (ii) XSLT code can be generated

automatically according to mapping rules. It reduces

the burden of programmer and improves the quality of

code. (iii) When mapping rules change, user only needs

to modify the weaving model, and then new XSLT

code could be generated automatically. In this way, the

maintainability of code is improved.

But there are still some limitations in our approach.

(i) Some web interchanging documents can not be

represented by XML schema. In this case, our

approach can not be applied on these documents. (ii)

Since the description ability of UML is a little weak,

some sophisticated XML schema can not be modeled

with UML.

In the future work, we will extend UML to fulfill

more sophisticated XML schema. We will find the

common data structures used in web interchanging

documents and summarize some patterns to facilitate

the work of modeling and code generating.

6. References

[1] G.L. Song, K. Zhang, J. Kong. Automatic

Generation of Transformation Rules for

Model Management. In: VL/HCC’05

Workshop on Visual Modeling for Software

Intensive Systems. Dallas, USA 2005

[2] OMG. MDA Guide Version 1.0.1. 12th June;

omg/2003-06-01] 2003. Available from:

http://www.omg.org/cgi-

bin/apps/doc?formal/03-06-01.pdf.

[3] Murugesan, Athula Ginige and San, Web

Engineering: An Introduction. Multimedia,

IEEE,Jan-Mar 2001. Vol.8(1): p. 14-18.

[4] Piero Fraternali, Paolo Paolini, Model-driven

development of Web applications: the

AutoWeb system. ACM Transactions on

Information Systems (TOIS) October 2000.

Vol.18(4): p. 323 - 382.

[5] H. Tai , K. Mitsui , T. Nerome , M. Abe , K.

Ono , M. Hori, Model-driven development of

large-scale web applications. IBM Journal of

Research and

Development,September/November 2004.

Vol.48(5/6): p. 797 - 809.

[6] Asset Oriented Modeling. Available from:

http://www.aomodeling.org/.

[7] hyperModel. Available from:

http://www.xmlmodeling.com/hyperModel/.

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 126

	Text4:

