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Abstract: - This paper presents a fuzzy logic approach to combine cost functions in adaptive systems. The 

proposed approach is based on the application of a “soft” threshold to switch between two different cost 

functions. A generic analysis is carried out, being the Huber’s function studied as a particular case. A channel 

equalization problem is used in order to benchmark the results achieved by the different cost functions.  
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1 Introduction 
Adaptive systems are a fundamental tool in digital 

signal processing. The general scheme of such a 

system is shown in Fig. 1. An adaptive system 

consists of the following parts [1]: 

• The signals that are processed by the filter: the 

input signal, x(n); the output signal, y(n); the 

desired signal, d(n); and the error signal, e(n), 

which is the difference between the desired and 

the output signals. 

• The structure that defines how the output signal 

of the filter is computed from its input signal 

(adaptive filter in Fig 1). This filter can be an 

FIR, IIR, Volterra filter, etc. 

• The parameters within this structure, which are 

the coefficients that define the transfer function 

of the adaptive filter. 

• The adaptive algorithm that describes how the 

parameters are at each time instant. This 

algorithm is based on the minimization of a cost 

function, so that the minimum corresponds to 

the optimum performance of the system (zero 

error). 

 
Fig. 1: Schematic of a classical adaptive system. 

 

The analysis of different cost functions is a common 

research activity that can be extended to other 

processing fields such as artificial neural networks 

[2], [3]. The identification of the best cost function 

for a given problem may increase the performance 

of the adaptive system. Nonetheless, it is difficult to 

choose an optimal cost function since each function 

shows a different behaviour depending on the input 

and desired signals. For instance, the quadratic cost 

function is optimal when the error distribution is 

normal, but it is not optimal with impulsive noise 

[3]. In order to circumvent this problem, cost 

functions, which are the result of combining 

elementary cost functions, are used. The theoretical 

basis for this combination comes from the field of 

robust statistics [4]. In this work, we propose the use 

of fuzzy logic to obtain an optimal combination of 

cost functions. 

The remainder of the paper is outlined as follows. In 

Section 2, the theoretical development of our 

approach is shown. Section 3 shows the results 

achieved in a channel equalization problem in which 

impulsive noise appears in the transmission; 

experimental results show the suitability of our 

approach. We end up the paper with some 

conclusions in Section 4.  

 

 

2 Combination of Cost Functions 

Using Fuzzy Logic 
Please, The use of cost functions derived from 

robust statistics is advisable in many adaptive 

systems [4]. Some of these functions are obtained 

by combining two cost functions that present 
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different behaviours according to the error 

committed by the adaptive system: 

 

J =
f (e) if e > β
g(e) if e ≤ β

 
 
   (1) 

 

where f(e) and g(e) are error functions, and the 

commutation between the two cost functions is 

given by a crisp threshold β. This type of functions 
are widely used  in adaptive signal processing, and 

especially, in the field of neural networks [4]. Some 

examples are given in Table 1. 

 

Talvar J =
0.5 ⋅ e2 e ≤ β
0.5 ⋅ β 2 otherwise

 
 
  

Huber J =
0.5 ⋅ e2 e ≤ β

β ⋅ e − 0.5 ⋅ β 2 otherwise

 
 
  

Hampel J =

β 2

π
⋅ 1− cos

π ⋅ e
β

 

 
 

 

 
 

 

 
 

 

 
 e ≤ β

2 ⋅ β 2

π
otherwise

 

 
  

 
 
 

 
Table 1. Examples of combinations of cost 

functions. 

 

The crisp commutation does not properly work 

when a wrong choice of the parameter β is made, 
since it may lead to slowing down the learning 

process (in the case of the Talvar’s function, it leads 

to stopping the learning process). 

In this work, we propose to use the approach 

presented in [5], to implement the combination of 

cost functions. In order to obtain a fuzzy 

combination, (1) is changed to: 

 

J =
f (e) if e  is high

g(e) if e  is low.

 
 
   (2) 

 

In accordance with fuzzy logic, the linguistic terms 

“high” and “low” should be defined using 

membership functions [6].  Fig. 2 shows two typical 

membership functions, µ1(e) y µ2(e), that define the 
membership degree to the functions f(e) and g(e).  
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Fig. 2. Membership functions of the linguistic terms 

“high” and “low”.  

 

Therefore, the cost function given in (2), can be 

defined as: 

 

J = µ1 e( )⋅ f e( )+ µ2 e( )⋅ g e( ) (3) 
 

This function is a generalization of the expression 

given in (1), where the membership functions worth 

1 in a certain range and 0 in the rest of values. 

Moreover, (3) allows the production of many 

different cost functions J, since there are many 

different fuzzy membership functions.  

Taking into account the minimum condition when 

the error equals zero: 

 

dµ1 e( )
de

⋅ f e( )+
dµ2 e( )
de

⋅ g e( )
e=0

= −
df e( )
de

⋅ µ1 e( )+
dg e( )
de

⋅ µ2 e( )
 

 
 

 

 
 
e=0

(4) 

 

If the elementary cost functions, f(e) and g(e), have 

a minimum in the origin, as it occurs in the cost 

functions shown in Table 1, the second term of (4) 

is equal to zero, so: 

 

dµ1 e( )
de

⋅ f e( )+
dµ2 e( )
de

⋅ g e( )
e=0

= 0
  (5) 

 

As there are only two membership functions, the 

following condition can be proposed: 
µ1 e( )+ µ2 e( )=1  (6) 
 

This leads to: 

 

dµ1 e( )
de

⋅ f e( )− g e( )[ ]
e=0

= 0
 (7) 
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If the membership function has a minimum in the 

origin, then (7) will be true. One of the functions 

which has a minimum in the origin is the Gaussian 

function: 

 

µ x( )= e−β ⋅x 2

 (8) 

 

Fig. 3 shows an example, in which the Mean-Square 

Error (MSE), the Mean-Absolute Error (MAE) and 

a fuzzy combination of these functions (MSE and 

MAE), are compared using this membership 

function for different values of the parameter β.  
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Fig. 3. Comparison of the quadratic cost function, 

the absolute-error cost function (solid lines) and our 

fuzzy approach 

 

Fig. 3 shows that the proposed fuzzy cost function 

presents an intermediate behaviour between the two 

elementary cost functions. This behaviour is 

controlled by the parameter β. 
 

3 Experimental Results. 
A channel equalization problem (Fig. 4) is used in 

order to illustrate the capabilities of the proposed 

approach.  

 

 
Fig. 4. Schematic of the channel equalization 

problem 

 

Two different channels, previously proposed in [7], 

were considered in the simulations. The first one is 

represented in z-transform as  
21

1 35.035.0)( −− ⋅−+= zzzH and we used L = 15 

(length of the adaptive system) and D = 8 (delay of 

the desired signal). This channel produces a 

misadjustment in the eigenvalues of the adaptive 

system input autocorrelation matrix of 1.45. The 

second channel is represented in z-transform as 
21

2 35.035.0)( −− ⋅++= zzzH , where a misadjustment 

of 28.7 is observed. We used 3000 input symbols 

for training and 5000 symbols for testing the 

performance, for a given Signal-To-Noise Ratio 

(SNR)  between 5 and 20 dB (in 3 dB steps), being 

the noise an additive Gaussian noise. Moreover, we 

added an impulsive noise in order to simulate the 

behaviour of the equalizer in more difficult 

conditions. This impulsive noise always appeared in 

the same iterations in order to avoid that the 

simulation average lessened the effect of this noise. 

The impulse had a probability of appearing equal to 

5%, and its amplitude was equal to 5. We used the 

membership function shown in (8), and the 

condition (6) was used to obtain the second 

membership function.  

The parameter β is used as a threshold between the 
elementary cost functions in the Huber’s function. It 

defines the amplitude of the membership functions 

in our approach. In the Huber’s function, the 

parameter β actually controls the system’s outliers: 
if the error is higher than β, then the update of the 
filter’s coefficients depends on the absolute value of 

the error, which is a robust function with respect to 

outliers. Therefore, the error committed by the 

system is computed within a time window, and the 

following value is assigned to the parameter β of the 
Huber’s function:  

 
22 eσβ ⋅=
 

where σe is the standard deviation of the error. Thus, 

if the error committed by the adaptive system using 

the Huber’s function is higher than this threshold, it 

can be considered as an outlier. 

A similar discussion can be applied to the 

membership function shown in (8), so that the 

membership function µ1 should equal zero if: 
 

4

4 1
0

x

prope
σ

β =⇒≈−

 
 

This way, a robust behaviour can be achieved.  Figs. 

5 and 6 show the BER (Bit Error Rate) in the 

validation set, defined as follows: 
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⋅=
N

N
BER error

10log10

 
 

where N=5000 and Nerror is the number of errors 

committed by the equalizer. 
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Fig. 5. BER vs. SNR obtained with the channel 

H1(z). 

 

Fig. 5 shows that our approach is more robust than 

using either the quadratic cost function, LMS, or the 

absolute value of the error, LAD, or even the 

Huber’s function. Moreover, the use of an adaptive 

parameter shows good results (it was not necessary 

to carry out many simulations to obtain an optimal 

parameter). Fig. 6 shows the same results but with a 

channel which produces a higher misadjustment in 

the eigenvalues of the adaptive system input 

autocorrelation matrix. An excellent behaviour of 

the proposed cost function is observed, as it was 

shown in the previous channel. 
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Fig. 6. BER vs. SNR obtained with the channel 

H2(z). 

 

Figures and Tables should be numbered as follows: 

Fig.1, Fig.2, … etc Table 1, Table 2, ….etc. 

If your paper deviates significantly from these 

specifications, our Publishing House may not be 

able to include your paper in the Proceedings. When 

citing references in the text of the abstract, type the 

corresponding number in square brackets as shown 

at the end of this sentence [1].  

 

 

4 Conclusion 
In this communication, a fuzzy logic approach has 

been proposed in order to improve the combination 

of cost functions. This approach allows a wide range 

of possibilities to define cost functions. Our 

approach has been tested in a channel equalization 

problem, showing a more robust behaviour than 

other approaches based on a crisp threshold to 

define the cost function combination. 
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