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Abstract: Fluid-solid flow phenomena is an interdisciplinary research area with great technological, commercial
and medical importance. One particular application is related to the drug delivery system in which magnetic
targeting offers the ability to target a specific site, such as a tumor. This paper presents a mathematical model and a
finite element method, based on the Arbitrary Lagrangian Eulerian approach, for studying blood-magnetic particle
flow in small vessels. Four models with one, three, five and nine particles are used to analyze the flow pattern and
pressure distribution along the flow direction. Effects of magnetic force on the blood-particle flow are investigated.
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1 Introduction
Cancer is one of the most insidious and potentially fa-
tal diseases in human being. Many evidences indicate
that progressive tumor growth is dependent on angio-
genesis which is the process in which new blood ves-
sels develop from an existing vasculature through en-
dothelial cell sprouting, proliferation and fusion [1].
New blood vessels provide nutrients to proliferating
cancer cells, which is in favor of tumor growth. Tu-
mor cells need an adequate blood supply in order to
perform vital cellular functions. The degree of dis-
turbance of blood flow is thus a good predictor of
the course of the disease, and hence regional blood
flow measure can permit earlier cancer detection. The
modern-day approach to cancer treatment is a mul-
tidisciplinary one involving varying combination of
surgery, radiation therapy, chemotherapy and targeted
therapies (a new weapon). In targeted therapies, a
medication or drug is controlled to target a specific
pathway in the growth and development of a tumor.
Although most of the drugs used to date have proven
to be successful on small animals such as mice [8, 9],
their efficiency in humans remains highly variable
from one patient to another. Understanding the flow

of blood and drug in the capillary bed is very impor-
tant for investigating the efficiency of drug treatment
as they pass from parent blood vessel to tumor surface
via an associated capillary bed. Over the last 15 years,
a number of mathematical models for blood vessel
formation [2, 3], blood flow and/or particle flow in
capillary networks [4, 5, 6, 7] in the area of tumor-
induced angiogenesis have been developed. One of
these, magnetically targeted drug delivery, involves
binding a drug to small biocompatible magnetic parti-
cles with diameters less than 5µm.

Driscoll et al. [11] had studied magnetically tar-
geted drug delivery by tracking each individual parti-
cle under the influence of Stokes drag force and mag-
netic force. Grief and Richardson [7] conducted a the-
oretical analysis of targeted drug delivery using mag-
netic particles and proposed a two-dimensional net-
work model. In their model, the motion of fluid is
described by Poiseuille flow, while the motion of a
magnetic particle, due to balancing hydrodynamic and
magnetic force, is governed by an advection-diffusion
equation for the particle concentration. They found
that drug targeting can be achieved by pulling mag-
netic particles to the edge of the vessel, and that the
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use of magnetically targeted drug delivery with an ex-
ternally applied magnetic field is appropriate only for
targets close to the surface of the body.

However, most existing models do not take into
account of the real 3D effect and the interaction
between blood flow and magnetic particles, Non-
Newtonian behavior of blood and the effect of mag-
netic forces. Therefore in order to fully understand
and control the local flow behavior of blood and par-
ticles through the area of tumor-induced angiogene-
sis, it is essential to develop a sophisticated model and
computational technique for the flow analysis. Hence,
based on the current development in the field, the
objective of this paper is to propose a sophisticated
model and computational technique for analyzing the
complex flow (blood-particle flow) behavior in tumor-
induced capillary networks using the current state-of-
the-art computational fluid dynamic (CFD) technol-
ogy. Our model couple the interaction of blood flow
with the particle flow using the Arbitrary Lagrangian
Eulerian (ALE) formulation. The governing equa-
tions for blood flow are the continuity equation and
the Navier-Stokes equations. For particle movement,
Newton’s law is applied. The complete model in-
cludes the governing equations for the blood flow, the
governing equations for the motion of fine particles,
the interaction conditions between blood and particle
at the interfaces, and boundary conditions.

2 Governing Equations
To study the motion of solid particles immersed in a
fluid, we assume that the fluid-solid particle system
occupies a bounded domain Ω̄ in R3. At a typical
instant of time t, Q particles occupy Q closed con-
nected subsets

∑Q
q=1 Ωq ⊂ R3 which is surrounded

by a viscous homogeneous fluid filling the domain
Ω̄−∑Q

q=1 Ωq called the flow-channel area.
In this study we use two coordinate systems: a

reference system, Ω, where the model is drawn and
the particle movement is solved, and a moving mesh
system, Ωdef , corresponding to the deformed mesh of
the flow channel, where we simulate the fluid flow.
The time evolution of the domain Ωdef is determined
by means of an Arbitrary Lagrangian-Eulerian (ALE)
mapping x : Ω ×R+ 7→ Ωdef which maps any point
(X, t) to its image x(X, t).

2.1 Transformation

In the flow-channel area, the two coordinate systems,
(X, Y, Z) ∈ Ω and (x, y, z) ∈ Ωdef , are connected
through a transformation T . At the initial state at t =
0, the two mesh systems are assumed to coincide. The

transformation T maps the point initially located at
(X,Y, Z) to the point (x, y, z) at time t:

T :
x = x(X, Y, Z, t)
y = y(X,Y, Z, t)
z = z(X,Y, Z, t).

Suppose that the functions x, y and z are continuous
differentiable with respect to X, Y, Z. Then the in-
finitesimals dX, dY, dZ transform into dx, dy, dz
according to

dx = x,XdX + x,Y dY + x,ZdZ,
dy = y,XdX + y,Y dY + y,ZdZ,
dz = z,XdX + z,Y dY + z,ZdZ,

(1)

where (·),X denotes differentiation with respect to X .
System (1) can be written in matrix form as




dx
dy
dz


 =




x,X x,Y x,Z

y,X y,Y y,Z

z,X z,Y z,Z







dX
dY
dZ


 . (2)

The 3× 3 matrix of partial derivatives in (2) is called
the Jacobian matrix of the transformation. Denote the
matrix by J, then

|J| = x,X(y,Y z,Z − y,Zz,Y )− x,Y (y,Xz,Z − y,Zz,X)
+ x,Z(y,Xz,Y − y,Y z,X).

For |J| 6= 0, the transformation is invertible and there
exists an inverse transformation at time t, i.e.,

T−1 :
X = X(x, y, z)
Y = Y (x, y, z)
Z = Z(x, y, z).

As in (2), we have



dX
dY
dZ


 =




X,x X,y X,z

Y,x Y,y Y,z

Z,x Z,y Z,z







dx
dy
dz


 . (3)

From (2), we also have



dX
dY
dZ


 = J−1




dx
dy
dz


 , (4)

where

J−1 =




IXx IXy IXz

IY x IY y IY z

IZx IZy IZz


 =

1
|J|M, (5)

M =




y,Y z,Z − y,Zz,Y x,Zz,Y − x,Y z,Z x,Y y,Z − x,Zy,Y

y,Zz,X − y,Xz,Z x,Xz,Z − x,Zz,X y,Xx,Z − y,Zx,X

y,Xz,Y − y,Y z,X x,Y z,X − x,Xz,Y x,Xy,Y − x,Y y,X


 ,

in which the I syntax is used to emphasize the com-
putation of the Jacobian of the inverse transformation
from the inverse of the original Jacobian.
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2.2 Motion of Fluid-Solid Flow in the De-
formed Mesh System

To study the motion of magnetic particles in the fluid
flow channel, we assume that the gravitational force
can be neglected and the particle movement is gov-
erned by Newton’s second law:

mq
∂Vq

∂t = Fv + Fq + Fmag, q = 1, 2, 3..., Q
Vq|t=0 = 0.

(6)
The position Xq of the center of the qth particle can
be determined by the equation:

dXq

dt = Vq , q = 1, 2, 3..., Q
Xq|t=0 = X0

q .
(7)

In equation (6)1, Vq and mq denote the velocity vec-
tor and the mass of the qth particle. The three applied
loads, drag force Fv, collision force Fq and magnetic
force Fmag, are defined based on the following as-
sumptions:

• All boundaries of particles experience drag force
Fv from fluid,

Fv = −nf · (−p I + η(∇v + (∇v)T )) (8)

which consists of the pressure and the viscous
drag of the fluid.

• To prevent the collisions among the particles, and
the particles and the vessel walls, the particle-
particle interaction force Fq,p and the particle-
wall interaction force Fq,w are applied when the
distance between two particles, or between a par-
ticle and a wall, is within the order of the element
size [10]

Fq =
Q∑

p=1,p6=q

Fq,p +
2∑

w=1

Fq,w, (9)

in which

Fq,p =





0, for dq,p > Rq + Rp + α
1
εq

(Xq −Xp)(Rq + Rp + α− dq,p)2,
for dq,p ≤ Rq + Rp + α

(10)
and

Fq,w =





0, for dq,w > 2Rq + α
1

εw
(Xq −Xw)(2Rq + α− dq,w)2,
for dq,w ≤ 2Rq + α

(11)

where dq,p denotes the distance between the cen-
ters of the qth and pth particles, dq,w denotes the
distance between the centers of the qth particle
and the imaginary particle on the other side of
the wall, Xq and Rq are center and radius of the
qth particle, α is the force range, and εq and εw

are small positive stiffness parameters.

• To trap magnetic particles (drugs) at the target
site, an external magnetic field is applied to gen-
erate a magnetic force acting on the particle [12].
This force, which is composed of three compo-
nents, is governed by the equations:

Fmag =
1
µr

(M · ∇)B, (12)

where µr is the relative permeability of a mag-
netic material, M = (Mx,My,Mz) is the
magnetic moment of the particle and B =
(Bx, By, Bz) is the magnetic flux density.

To determine the drag force Fv in (8), blood is as-
sumed to be an isotropic, homogeneous incompress-
ible fluid. The motion of the blood is described by the
continuity equation and the Navier-Stokes equations

∇ · v = 0, (13)

ρf
∂v
∂t

+ ρf (v · ∇)v −∇ · σ = F, (14)

for x in Ωdef (t) where ρf denotes the blood density,
v = [u, v, w]T represents the 3D velocity vector, and
F is the volume force acting on the fluid. For this
model, we neglect the effect of gravitational force and
thus F = 0. The quantity σ in equation (14) is the
stress tensor given by

σ = −pI + η(∇v + (∇v)T ), (15)

where η is the blood viscosity and p is the blood pres-
sure.

On the wall, the no-slip condition is applied. On
the inflow boundary Γin, the velocity is assumed to
be constant, while on the outflow boundary Γout, the
stress-free condition is used:

v = v0 on Γin

σ · n = 0 on Γout.
(16)

For static condition in stationary bodies, the mag-
netic flux density B is governed by Maxwell’s equa-
tions:

∇ ·B = 0
∇×H = 0

(17)
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where the magnetic flux density B and the magnetic
field strength H are related through the constitutive
relation

B = µ0µrH + Br, (18)

in which Br = µ0µrM denotes a residual flux den-
sity, µ0 is the permeability in vacuum.

From the first equation of (17), the magnetic flux
density can be determined from a vector potential by
B = ∇×A which identically satisfies the first equa-
tion of (17). Using the identity

∇× (∇×A) = ∇(∇ ·A)−4A,

and the Coulomb gauge ∇ ·A = 0, the second equa-
tion of (17) takes the form

∇× (µ−1
0 µ−1

r ∇×A−M) = 0, ∀x ∈ Ωdef

or 4A = −∇× (µ0µrM),
(19)

which is the vector-valued Poisson equation for the
magnetic potential A.

Due to the movement of the coordinate system,
the mesh velocity Ψ = (Ψx, Ψy, Ψz) is introduced in
the deformed domain Ωdef . To guarantee a smoothly
varying distribution of the nodes, we assume that the
nodes on ∂Ωq move with the particle (no slip) and that
each component of the mesh velocity in the fluid chan-
nel is governed by a Laplace equation:

∇2Ψ = 0, ∀x ∈ Ωdef . (20)

The above equation is to smooth gradient of the mesh
velocity over the domain so as to reduce mesh dis-
tortion. Once the mesh velocity components are de-
termined, we can determine the smoothed deformed
mesh for the flow channel at each time instant by up-
dating the coordinates of the nodes according to the
following formulae

x = X +
∫ t
0 Ψx dt,

y = Y +
∫ t
0 Ψy dt,

z = Z +
∫ t
0 Ψz dt.

(21)

Another condition that needs to be specified is
that the fluid, particle and mesh move with the same
velocity on the particle boundaries, i.e.,

Ψ = v = Vq on ∂Ωq. (22)

We now have the strong coupled problem for the
fluid-particle flow in the drug delivery system. These
equations are solved to yield Vq in Ω and v, p,A,Ψ,
in Ωdef .

3 Finite Element Formulations
The weak formulation of the fluid flow problem is to
find (v, p,A,Ψ) ∈ = ≡ [H1(Ωdef )]3 × H1(Ωdef ) ×
[H1(Ωdef )]3× [H1(Ωdef )]3 in the deformed mesh sys-
tem at each time instant such that all the Dirichlet
boundary conditions are satisfied and ∀(v̂, p̂, Â, Ψ̂) ∈
=0 ≡ {(v̂, p̂, Â, Ψ̂) ∈ =| v̂ = 0 on ∂Ωdefv ,

p̂ = 0 on ∂Ωdefp , Â = 0 on ∂ΩdefA and Ψ̂ = 0
on ∂ΩdefΨ } ,

∫

Ωdef

p̂ (∇ · v) dΩ = 0, (23)

∫

Ωdef

(
ρf v̂ · ∂

∂t
v + η∇v̂ : ∇v + ρf v̂ · (v · ∇)v

− p∇ · v̂
)

dΩ =
∫

∂Ωdef

v̂ · (σ · n) ds (24)

∫

Ωdef

(
∇Â : ∇A− Â · ∇ × (µ0µrM)

)
dΩ = 0,

(25)
and ∫

Ωdef

∇Ψ̂ : ∇Ψ dΩ = 0, (26)

where ∂Ωdefv , ∂Ωdefp , ∂ΩdefA and ∂ΩdefΨ are the
parts of boundary where the velocity, the pressure, the
magnetic potential and the mesh velocity are speci-
fied. It should also be addressed that various surface
integral terms, arising in the formulation, vanish as
the test functions involved in the terms are zero on the
boundary.

Since the computations are conducted in the ref-
erence coordinates, Ω, we need to transform equations
(23) - (26) in the deformed coordinates to those equa-
tions in the reference coordinates. Through this and
using (16)2, we obtain

∫

Ω
p̂ (∇ · v) |J| dΩ = 0, (27)

∫

Ω

(
ρf v̂ · ∂

∂t
v + η∇v̂ : ∇v + ρf v̂ · (v · ∇)v

− p∇ · v̂
)
|J| dΩ = 0, (28)

∫

Ω

(
∇Â : ∇A− Â · ∇ × (µ0µrM)

)
|J| dΩ = 0,

(29)
and ∫

Ω
∇Ψ̂ : ∇Ψ |J| dΩ = 0, (30)
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where the derivatives of the unknown functions
Ψi (i = x, y, z) are determined by the following ex-
pressions:

Ψi,x = Ψi,XIX,x + Ψi,Y IY x + Ψi,ZIZ,x,
Ψi,y = Ψi,XIX,y + Ψi,Y IY y + Ψi,ZIZ,y,
Ψi,z = Ψi,XIX,z + Ψi,Y IY z + Ψi,ZIZ,z.

(31)

The derivatives of other unknown functions
u, v, w, Ax, Ay and Az are defined in the same
way as those of the Ψi functions.

4 Numerical Results and Discussion
In a two dimension case, the magnetic potential is as-
sumed to have a nonzero component only in the direc-
tion perpendicular to the plane, i.e., A = (0, 0, Az).
On ∂Ωq and ∂Ω, the magnetic potential is set to zero,
that is, Az = 0.

The magnetization M = (Mx, My) for the mag-
netic source is given by Mx = 0,My = 5 × 104A ·
m−1, and for the magnetic particles

Mx = a arctan
(

b
µ0µr

Az,y

)
,

My = a arctan
(
− b

µ0µr
Az,x

)
,

(32)

where a and b are two material parameters.
To understand the blood-particle flow in a small

vessel, a 2D domain with one, three, five and nine
particles are used. The computation domain is a hor-
izontal channel with height of 6.2 µm and length of
45 µm. The particles are circular with diameter of 0.5
µm. Blood is assumed to flow into the channel with
speed 1.85 cm/s from the left to the right. The fluid
properties are typical of human blood with the vis-
cosity η of 0.0035 Pa · s and the density ρf of 1060
kg·m−3. All particles are assumed to be solid with the
density of 1112 kg · m−3. The relative permeability
µr is 5× 103 for the magnet particles and 0.99998 for
the tissue in the blood vessel. The material parameters
a and b are 1× 10−4 and 3× 10−5, respectively.

The Arbitrary Lagrangian Eulerian approach is
used to handle the dynamics of deforming geometry
and the moving boundaries. New mesh coordinates
on the channel area are calculated based on the move-
ment of the particles. The Navier-Stokes equations are
formulated in the moving coordinate system. Particle
interactions and particle collisions are neglected. Via
the simulations of the model we can describe the flow
pattern and pressure distribution in the particle-fluid
system.

Figure 1: The 2D geometry of the blood vessel with
a magnetic source at the middle of the vessel and its
finite element mesh

(a) t = 0 sec.

(b) t = 0.81 milli sec.

(c) t = 1.18 milli sec.

Figure 2: Velocity profiles at various instants of time
for the case with three particles

(a) t = 0 sec.

(b) t = 0.69 milli sec.

(c) t = 1.02 milli sec.

Figure 3: Velocity profiles at various instants of time
for the case with five particles

Figure 1 shows the finite element mesh and the
external magnetic field applied to the system. The
computation domain consists of 3519 elements with
1791 nodes.

Figures 2-3 show the velocity distributions for the
models with three and five particles, respectively, at
the absence of the external magnetic field. In these
cases, the particles flow in the axial direction. Figure
4 shows the pressure distribution along the axis of the
tube at t = 0 for various cases with different num-
ber of particles in the fluids. It is noted that with the
increase of particle number, the pressure required on
the entry of the tube increases significantly. Figure 5
shows the velocity profile of fluid and the particle mo-
tion for the case with four particles at the presence of
an external magnetic field. It is clearly noted that the
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Figure 4: Pressure profiles along the flow direction at
t = 0s

(a) t = 0 sec.

(b) t = 7.18 micro sec.

(c) t = 9.96 micro sec.

Figure 5: Velocity profiles at various instants of time
for the case with four magnetic particles

model can simulate the flow of particles toward the
targeted region.
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