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Abstract: - The optimal reactive power dispatch (ORPD) problem is formulated as a combinatorial 

optimization problem involving nonlinear objective function with multiple local minima. In this paper, as a 

new approach, different ant colony optimization (ACO) algorithms are applied to the reactive power dispatch 

problem. Ant system (AS), the firstly introduced ant colony optimization algorithm, and its direct successors, 

elitist ant system (EAS), and max-min ant system (MMAS), are employed to solve the reactive power dispatch 

problem. To analyze the efficiency and effectiveness of these modern search algorithms, the proposed methods 

are applied to the IEEE 30-bus system and the results are compared to those of conventional mathematical 

methods, genetic algorithm, evolutionary programming, and particle swarm optimization. 
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1   Introduction 
Optimal reactive power dispatch (ORPD) plays a 

decisive role in economic and secure operation of 

power systems. ORPD is a special case of the 

optimal power flow (OPF) problem in which control 

parameters are those variables, which have a close 

relationship with the reactive power flow, such as 

generator bus voltages, output of static reactive 

power compensators, transformer tap-settings, shunt 

capacitors/ reactors, etc. The objective of ORPD is 

to minimize the network real power loss and 

improve the voltage profile, while satisfying a given 

set of operating and physical constraints. Because 

outputs of shunt capacitors/reactors and tap-settings 

of transformers are discrete variables while any 

other parameter in ORPD is continuous, the reactive 

power dispatch problem can be modeled as a large-

scale mixed integer nonlinear programming 

(MINLP) problem. 

    Several classical approaches such as linear 

programming, nonlinear programming, quadratic 

programming, the mixed integer programming, the 

Newton method, etc., have been successfully applied 

to solve the ORPD problem [1]–[3]. Recently, 

methods based on interior point techniques, which 

present much faster convergence and noticeable 

convenience in handling inequality constraints in 

comparison with other methods, have been 

presenting encouraging results to handle the large-

scale ORPD/OPF problems [4]–[5]. However, these 

techniques have severe restrictions in handling the 

integer problems and objective functions having 

multiple local minima. 

    In recent years, many new stochastic search 

methods have been developed for the global 

optimization problems. Many salient stochastic 

methods such as genetic algorithm (GA), simulated 

annealing (SA), tabu search (TS), evolutionary 

programming (EP), evolutionary strategy (ES), and 

particle swarm optimization (PSO), have been 

developed to solve the ORPD problem [6]–[10]. 

Such methods offer considerable superiority in 

finding the global optimum point and in handling 

discontinuous and non-convex objective functions. 

But many of these methods suffer from the inability 

to manage optimization problems of integer and 

discrete nature. 

    Ant colony optimization (ACO) algorithms are 

modern search methods, which are inspired by the 

foraging behavior of ant colonies, and target discrete 

optimization problems. The ACO methods belong to 

biologically inspired heuristic (meta-heuristics) 

methods. Ants are members of a family of social 

insects, which live in organized colonies. Real ants 

are blind creatures, which can stochastically build 

their path from their nest to the food source, without 

using visual cues, but by using a combination of 

heuristic information and a chemical secretion called 

pheromone. The first ACO algorithm was developed 

by Dorigo as his PhD thesis in 1992 [11], and 

published under the name ant system (AS) in [12]. 

AS obtained encouraging initial results, but found to 

have some drawbacks compared to other state-of-
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the-art meta-heuristic search methods [13]. So some 

improved extensions of the AS algorithm were 

developed to enhance the performance of the 

original version. These extensions include elitist ant 

system (EAS), and max-min ant system (MMAS). In 

power systems, the ACO has been applied to solve 

the optimum generation scheduling problems, and 

the optimum switch relocation problem, recently. 

    In this paper, we propose a novel ACO-based 

optimal reactive power dispatch approach and three 

different ACO algorithms, including the simple ant 

system and two of its direct successors, elitist AS, 

and max-min AS, have been used to solve the 

ORPD problem. Various aspects of performance of 

these modern search algorithms in solving the 

ORPD problem are analyzed using the IEEE 30-bus 

test system. 

 

 

2   Problem Formulation 
The objective of the reactive power dispatch consists 

of minimising the real power loss in the 

transmission network, which can be described 

mathematically as follows: 
2 2
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where ( , ) ; Bk i j i N=    ∈ and j belongs to the set of 

buses adjacent to bus i. In the above formulation, 

lN  and BN  represent the set of network branches 

and the set of total buses, respectively, kg is the 

conductance of branch k, iV is the voltage 

magnitude of bus i ,and ijθ is the voltage angle 

difference between buses i and  j. 

    The minimization of the above function is subject 

to a number of equality and inequality constraints: 
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where 0N , PQN are the set of total buses excluding 

slack bus, the set of PQ buses, respectively; diP and 

diQ are the specified active and reactive power 

demand at bus i, respectively; iV  is the voltage 

magnitude of bus i; ijG and ijB  are transfer 

conductance and susceptance between buses i and j. 

    The inequality constraints of this optimization 

problem are the lower and upper bounds of bus 

voltages, transformer tap positions, reactive power 

output of generators, and reactive power output of 

the shunt VAR sources. 

     The decision variables of the ORPD problem are 

the voltages at generation buses, reactive power 

output of shunt compensators and transformer tap 

positions. 

  

 

3   Basic Concepts of Ant Colony 

Optimization Algorithms 
ACO algorithms simulate the behavior of real ants 

[12], and are based on the principle that a group 

(colony) of ants is able to find the shortest path 

between two points, without any sense of sight but 

by using simple communication mechanisms among 

the members of the colony. While walking, each ant 

deposits a chemical substance called pheromone on 

the ground. The pheromone guides other ants toward 

the target point. Each ant uses a probabilistic choice 

rule, based on the quantity of pheromone and some 

heuristic information to choose its path. 

    First of all, to devise any ACO algorithm to be 

used in solving any optimization problem, a graph 

demonstrating the whole search space is constructed. 

This graph can be shown as: ( , )G C L , where C 

represents the set of all nodes and L is the set of all 

arcs of the graph. Each ant begins its trip from a 

specified start node (nest) and moves toward the 

target node (destination), crossing some nodes of the 

search graph. 

    After the graph construction, all ants are 

positioned on the start node and initial values for 

pheromone trails are set on all arcs of the graph. 

Then each ant starts its tour from the starting node to 

the target node and chooses the next node to visit, 

taking into account the amount of pheromone trail 

and some heuristic information. Ants prefer to move 

to nodes, which have a high amount of pheromone. 

This process will repeat until all ants complete a 

tour. 

    After all ants have completed their tours, the 

fitness value of each ant must be calculated. Some 

fitness functions of the optimization problem can be 

used to evaluate the performance of the ants. After 

the fitness evaluation of all ants, these fitness values 

are used to update the amount of pheromone on the 

arcs of the search graph. Update of pheromones in 

each iteration of the algorithm is performed in two 

stages. First, pheromone evaporation is performed 

on all arcs of the graph. The pheromone amount of 

each arc will evaporate over time, and it loses 

intensity if other ants lay down no more pheromone. 

After the evaporation, a specific amount of 

pheromone is added on some arcs. This pheromone 

update process differs for different ACO algorithms 

and will be described for each algorithm separately 

in the next section. The algorithm is terminated if 

the number of iterations reaches the predefined 
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maximum value or the best solution of each iteration 

has not improved for a specific number of iterations.  

 

 

4   Ant System and its Extensions 
As mentioned before, the first ACO algorithm, ant 

system (AS) was introduced using the traveling 

salesman problem (TSP) as a sample application. 

AS presented interesting initial results, but had some 

deficiency compared to powerful algorithms 

available for the TSP. The main difference between 

AS and its extensions is the way of pheromone 

update, as well as some additional details in the 

management of the pheromone trails. This section is 

devoted to presentation of AS, EAS and MMAS 

algorithms, and analyzing their characteristics. 

 

4.1   Ant System 
After the graph construction, a constant amount of 

pheromone is put on all the arcs. In AS an 

appropriate value for the initial pheromone is a 

value slightly higher than the expected amount of 

pheromone deposited by the ants in one iteration. In 

AS, m ants build their tour from the start point to the 

target. At each construction step, each ant applies a 

probabilistic choice rule to decide which point to 

visit next. The probability with which ant k, 

currently at node r, chooses to go to node s is as 

follows: 
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where ( , )r sη  is a heuristic value that is available a 

priori, α ,β  are two parameters which determine the 

relative influence of the pheromone trail and the 

heuristic information, and k
rN  is the feasible 

neighborhood of ant k when being at node r. By this 

probabilistic rule, the probability of choosing a 

particular arc (r,s) increases with the value of the 

associated pheromone trail ( , )r sτ  and the heuristic 

information value ( , )r sη . 

    After all ants have constructed their tours, the 

pheromone trails are updated. This is done by first 

lowering the pheromone value on all arcs by a 

constant factor, and then adding pheromone on the 

arcs the ants have crossed in their tours. Pheromone 

evaporation is implemented by: 

( , ) (1 ) ( , ) , )r s r s r s Lτ = −ρ  τ   ,     ∀( ∈         (5) 

where 0 < ρ ≤1 is the pheromone evaporation rate. 

This parameter is used to avoid unlimited 

accumulation of the pheromone trails and it enables 

the algorithm to forget bad decisions made before. 

    After evaporation, all ants deposit pheromone on 

the arcs they have crossed in their tour: 

1

( , ) ( , ) ( , ) , )
m

k

k

r s r s r s r s L
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where ( , )k r s∆τ  is the amount of pheromone 

deposited by ant k  on the arc (r,s) it has crossed. It 

can be shown as follows: 
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Τ
        (7) 

where 
kf  is the objective function value 

corresponding to the tour kΤ  built by ant k. 

According to (12) the better an ant’s tour is, the 

more pheromone the arcs belonging to this tour 

receive. Generally, arcs that are used by many ants 

which are part of short tours (tours leading to small 

values of the objective function) receive more 

pheromone and are more likely to be chosen by ants 

in future iterations of the algorithm. 

 

4.2   Elitist Ant System 

One of the first improvements performed on the 

initial AS is the elitiset ant system (EAS) [11]. The 

idea is to provide strong additional pheromone 

reinforcement to the arcs belonging to the best tour 

found since the start of the algorithm. This 

additional reinforcement to the best-so-far tour, 
bsT , can be viewed as additional pheromone 

deposited by an additional ant called ‘best-so-far’ 

ant. The additional reinforcement of tour bsT is 

achieved by adding a quantity / bsfe  to its arcs, 

where e is a parameter that defines the weight given 

to the best-so-far tour, bsT , and bsf is the value of 

objective function corresponding to bsT . Therefore 

the pheromone update is done according to: 

1

( , ) ( , ) ( , ) ( , ) , )
m

k bs

k

r s r s r s e r s r s L
=

τ = τ + ∆τ + ∆τ  ,  ∀( ∈  ∑ (8) 

where ( , )k kr s f∆τ  =1/  and  ( , )bs bsr s f∆τ  =1/ . 

Note that in EAS, pheromone evaporation is 

implemented as in the initial AS. 

 

4.3    Max-Min Ant System 
Max-min ant system [13] introduces four main 

modifications with respect to AS. First, it strongly 

exploits the best tours found during the algorithms. 

In MMAS, either the iteration-best ant, that is, the 

ant that produced the best tour in the current 

iteration, or the best-so-far ant, that is, the ant that 

obtained the best tour since the start of the 

algorithm, is allowed to deposit pheromone. But 

such a strategy may lead to a stagnation situation in 

which all the ants follow the same tour, because of 

7th WSEAS International Conference on Electric Power Systems, High Voltages, Electric Machines, Venice, Italy, November 21-23, 2007     123



the excessive accumulation of pheromone trails on 

arcs of a good, although sub-optimal, tour. To 

counteract this effect, a second modification 

introduced by MMAS is that it limits the possible 

range of pheromone trail values to the interval 
min max[ , ]τ τ . Third, the pheromone trails are 

initialized to the upper trail limit, which, together 

with a small pheromone evaporation rate, increases 

the exploration of the search space at the start of the 

search. Finally, in MMAS, pheromone trails are 

reinitialized each time the system approaches 

stagnation or when no improved tour has been 

generated for a certain number of iterations. 

 

 

5   Implementation of ACO 

Algorithms for the ORPD Problem 
The vector of decision variables for the ORPD 

problem consists of all the generator bus voltages, 

transformer tap ratios, and the reactive power output 

of shunt capacitors/reactors. In our approach, the 

search space of the problem that represents the 

settings of all these control parameters is mapped on 

a search graph, which is the space in which the 

artificial ants walk. Fig. 1 shows such a graph for 

the ORPD problem. Each stage of the graph 

corresponds to a specific control variable and all the 

possible discrete settings for that variable are 

represented by the states of the corresponding stage. 

The number of stages is equal to the number of 

control parameters of the optimization problem, and 

the number of states of a specific stage is equal to 

the number of possible discrete values for the 

corresponding variable. So the number of states are 

not essentially the same in all stages. 

 
 

Fig. 1. Search graph for the ORPD problem 

 

Fig. 2 shows the general algorithm of the ACO 

algorithms for solving the optimal reactive power 

dispatch problem. 

 

Input the ACO algorithm parameters

Construct the search graph of the ORPD

Initialize the pheromone trails 

appropriately and Iter=1

k=1

Move ant k along the arcs of the graph using 

the probabilistic choice rule (4) and update 

its location list

Calculate the obtained solution of ant k, 

corresponding to its location list

Run AC power flow and obtain the objective 

function value for ant k (Add penalty 

function if there is any constraint violation)

k < m

Perform the pheromone update process

Output the best solution

Iter<Iter
max

k=k+1

Iter=Iter+1

 
 Fig.2.  The general flowchart of ACO algorithms for the 

ORPD problem 

 

    Each ant chooses the next states to go to in 

accordance with the probabilistic choice rule given 

in (4). When ant k moves from one stage to the next, 

the state of each stage will be recorded in its 

location list, kJ . After its tour is complete, its 

location list is used to compute the ant’s current 

solution. When all ants in the colony complete their 

path, and the solution of each ant is achieved, the 
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fitness of each ant is computed. This is done by 

performing an AC load flow on the system using the 

control variables’ values obtained by each ant. As 

we mentioned before, the main difference between 

AS and  its extensions, proposed in this paper to 

solve the ORPD problem, is the way of pheromone 

update. So the following algorithm is the same for 

all three ACO-based algorithms introduced in the 

previous sections, except for the pheromone update 

process, that was exactly described for each 

algorithm before. 

    The important issue is the way of handling 

constraints of the ORPD problem. All ants are free 

to choose infeasible paths and constraint violations 

are penalized and added to the objective function as 

penalty terms. In the ORPD problem, generator bus 

voltages, tap position of transformers, and the 

amount of the reactive power source installations are 

control variables, which are self-constrained. 

Voltages of PQ-buses and injected reactive power of 

PV-buses are constrained by adding them as 

quadratic penalty terms to the objective function. 
 

 

6   Numerical Results 
The IEEE 30-bus system [14] is used as the test 

system to apply the presented ACO algorithms to 

the optimal reactive power dispatch problem. The 

reactive power source installation buses are 3, 10 

and 24. The transformer taps are in 21 steps (0.01 

p.u. for each step), while the reactive power 

compensations are in 13 steps (0.03 p.u. for each 

step). We have selected 41 steps for generator-bus 

voltages (0.005 p.u. for each step) in this study. The 

graph representing the whole search space of the 

problem consists of 13 stages (four transformer taps, 

six generator voltages, and three shunt capacitors), 

and the total number of states is equal to 369. 

    To analyze different characteristics of the 

presented ACO algorithms in solving the ORPD 

problem, simulation results have been compared 

with various techniques available in the literature, 

namely, Broyden’s nonlinear programming method, 

standard genetic algorithm (SGA), adaptive genetic 

algorithm (AGA), and particle swarm optimization 

(PSO), all in [10], and the EP method in [8]. 

    Table 1 summarizes the minimum active power 

loss obtained by different methods. As can be seen, 

the EAS algorithm has achieved acceptable results 

and outperforms the EP, Broyden, and SGA 

methods. The AS algorithm has shown poor 

performance and its optimal solution is worse than 

that of all stochastic search methods in the table. 

One can see from Table 1 that the optimal dispatch 

solutions determined by the MMAS algorithm lead 

to lower power losses than found by other methods, 

which confirms that MMAS is well capable of 

determining the global or near global optimum 

dispatch solution. It should be noted that all the 

presented ACO algorithms have succeeded in 

keeping all the dependant variables, load-bus 

voltages and reactive power output of generators, 

within the their specified limits. 
 

Table 1. Comparison of optimal result obtained by 

different methods 

 

    Method 
Minimum 

lossP  
(p.u.) 

Broyden 0.055860 

SGA 0.049800 

AGA 0.049260 

EP 0.049630 

PSO 0.049262 

AS 0.049945 

EAS 0.049298 

MMAS 0.049035 

 

    Because of the randomness of all stochastic 

search algorithms, AS, EAS, MMAS, and SGA are 

executed 50 times when applied to the test system. 

The best, worst and average solutions obtained by 

these algorithms are presented in Table 2. From this 

table, the MMAS method shows noticeable 

consistency by keeping the difference between the 

best and worst solutions within 0.8%. The 

outstanding issue in the results presented in Table 2 

is that the average solution obtained by the MMAS 

method is better than the best solutions obtained by 

any other method in Table 1. 

    To analyze the results obtained by the presented 

ACO algorithms in a statistical manner, the relative 

frequency of convergence is provided for each range 

of power losses among 50 trials in Table 3. The 

numbers presented in Table 3 show the percentage 

of solutions found in each specified range by each 

method. One can observe the robustness and 

superiority of the MMAS method, which has 

achieved 100% of its solutions in such a range, 

which SGA and basic AS have not been able to 

reach even once. 

 
Table 2. Comparison  of  performance of  different 

methods  within  50  trials  (P.U.) 
 

Compared item AS EAS MMAS SGA 

Best solution 0.049945 0.049298 0.049035 0.049800 

Average solution 0.050877 0.049527 0.049166 0.050810 

Worst solution 0.051843 0.050316 0.049428 0.052140 

Table 3. Comparison of relative frequency of 

convergence for different methods 
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Range of power loss (p.u.) 

Methods 0.0520 

- 

0.0525 

0.0515 

- 

0.0520 

0.0510 

- 

0.0515 

0.0505 

- 

0.0510 

0.0500 

- 

0.0505 

0.0495 

- 

0.0500 

0.0490 

- 

0.0495 

SGA 4 10 22 30 26 8 0 

AS 0 12 22 32 28 6 0 

EAS 0 0 0 0 18 38 44 

MMAS 0 0 0 0 0 0 100 

 

 

7 Conclusion 
In this paper, an ACO-based approach for the 

optimal reactive power dispatch problem was 

proposed and three different ACO algorithms, 

including AS, EAS and MMAS, were applied to the 

problem. Our approach consists of mapping the 

solution space on a search graph, where artificial 

ants walk. According to the results presented, the 

AS method has severe limitations in finding global 

or near global optimum solutions compared to other 

powerful stochastic techniques. According to the 

computational results, applying the elitist strategy to 

the basic AS improves the algorithm’s performance 

in every respect. The EAS algorithm is well capable 

of finding acceptably high-quality solutions, and 

outperforms some stochastic methods in the 

literature. The MMAS algorithm, on the other hand, 

due of its special emphasis on the best solutions 

found during the search process, together with its 

ability to explore the search space in early iterations 

and also its preventive strategy against stagnation, is 

quite effective and robust in solving the optimal 

reactive power dispatch problem as a complex 

optimization problem of integer and discrete nature. 
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