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Abstract� - The eigensolution-free method is proposed to calculate index of modal observability and controllability 

of large-scale power systems to study power system oscillation stability. This paper presents the work of applying 

the eigensolution-free method in a real large-scale power system in China. Because the method does not need to 

carry out eigensolution of the power system, a large amount of computational cost is saved. In addition, the 

numerical difficulty of high-dimensional computation is successfully avoided.   
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1 Introduction 
Generators operate synchronously with each other 

connected by transmission lines in power systems. The 

rotors of generators may swing against each other under 

disturbances, that leads to the so-called low frequency 

oscillation with oscillation frequency usually between 

0.1~2.5Hz. Generally speaking, the oscillation is due to 

the variations of real power loads and the lack of 

system damp. Hence it is also named power oscillation 

or electromechanical oscillation. PSS (power system 

stabilizer) and FACTS-based stabilizer are two types of 

commonly-used devices to damp the low frequency 

oscillation. The damping effect significantly depends 

on the selection of the stabilizers’ installing locations. 

Hence it has been an active topic of research since 

1980s to select the most effective installing locations of 

stabilizers.  

 

Eigensolution-Free method in the selection of 

stabilizer’s installing locations proposed in [1] has its 

unique advantages in practice compared with typical 

modal control analysis method. It simplifies the 

calculations of the controllability and observability of 

the low frequency oscillation modes. It is especially 

useful for large-scale power system. This paper will 

firstly review the method in [1] and then gives an 

example of application in a real large-scale power 

system. 

 
 

2 Power system modal observability, 

controllability theory and eigensolution-

free method 
 

 

 

 

The linearized Heffron-Philips model of a power 

system is 

 

BuAxx +=�                                                       (1)   

where    [ ]TT
qe

T
q

TT
∆EE∆,∆ω,∆x ,′= δ  

[ ]Tn21 ∆,,∆,∆∆ δδδδ �=  

[ ]Tn21 ∆ω,,∆ω,∆ω∆ω �=  

[ ]T
nq2q1qq E∆,,E∆,E∆E∆ ′′′=′ �  

[ ]T
nqe2qe1qeqe ∆E,,∆E,∆E∆E �=  

 

The input matrix B�controlling matrix�depends on the 

selection of input signals.  

 

The output equation of power system is: 

 

DuCxy +=                                                            �2� 

 

where the output matrix C � observing matrix �

generally selects w∆  to be output signals and the direct 

matrix D is usually zero. 

 

By introducing new system state variable vector z ,  

zx φ=                          �3� 

where, φ is the right eigenvector matrix of state matrix 

A, state equation of the power system is converted to  
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where φ
-1

is the left eigenvector matrix of state matrix 

A and 

 

BB
-1

φ=′  is the  modal controllability matrix and 

φCC =′ modal observability matrix. φφ A
-1

 is a 

diagonal matrix and the ith diagonal element iλ  is the 

ith mode of the system.  

 

Providing that the ith row of matrix B’ is zero, the input 

signals will not affect the ith mode of the power system. 

In this situation, the ith mode is uncontrollable. 

Similarly, providing that the ith column of matrix C’ is 

zero, the variable iz will not affect the formation of the 

output signals. In this situation, the ith mode is 

unobservable. To mode iλ , the kth generator has 

stronger controllability if ikB  is bigger; the lth 

generator has stronger observability and it is easier for 

the mode iλ  to be observed there if liC  is bigger.  

 

The conventional modal control analysis method stated 

above is based on eigenvalue and eigenvector 

calculations. Therefore the system eigen-equation must 

be solved first. For the applications in large-scale power 

systems, due to the computational complexity and 

numerical difficulty of eigensolution of high-

dimensional matrix, the conventional method is not 

very favourable.  

 

Eigensolution-Free method proposed in [1] is based on 

the following three assumptions 

1) The oscillation mode of interest should be 

lightly damped. That is ii jωλ ≈ . 

2) The oscillation frequency iω  that we are 

interested in is known.  

3) At least one of the sensitive generators to the 

oscillation modes of interest should be known, 

being assumed to be the jth generator in the 

system. 

 

The system linearized state space equation of (1) is 

rearranged to be 
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The observability and controllability of the mode 

iii jωσλ +−=  are: 

 

B
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where iV  
and T
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are right and left eigenvectors of 

matrix A to mode iii jωσλ +−= . 
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From equation (7) and (8), we can obtain: 
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Hence 
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Taking the same procedure we can have 
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From equation (10) and (11), we can get the residue 

index to be: 

R K K v w K K Pi i cj i oj i i i cj i oj i j( ) ( ) ( ) ( ) ( )λ λ λ λ λ= = −2 2

                    (12) 

         
For damping the ith mode, if we choose the installing 

locations of a stabilizer between location A and B, 

when )(b iiA λ )(c iiA λ > )(c)(b iiBiiB λλ , A is better 

than B. Therefore, it is the ratio of multiplication of 

)(b

)(b

iiB

iiA

λ

λ

)(c

)(c

iiB

iiA

λ

λ
 that determines the selection of best 

installing locations and feedback signals.  

 

The controlling vector B and the output vector 
T

C  will 

change with the different selections of installing 

locations and feedback signals. However, the open-loop 

system matrix A will not change. That is: 

v vi A i B2 2=  , w wi A i B2 2=                           (13) 

 From equation (11) and (12), we can get: 
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The controllability 
b i i( )λ

and observability 
c i i( )λ

, 

the index to measure the effectiveness of the stabilizers 

so as to select the installing locations and feedback 

signals, can be replaced by 
)( ibiK λ

and
)( iciK λ

. 

Since in most cases, the oscillation mode of interest is 

lightly damped, 
λ ωi ij≈

 

 

)(K ibi λ )j(K)(K ibiici ωλ ≈ )j(K ici ω
                  

(15) 

 

Therefore, the modal control analysis by use of  

)(K ibi λ )(K ici λ  is eigensolution free. 

 

3  Test of eigensolution in a real large-

scale power system examples 
The eigensolution-free method proposed in [1] was 

demonstrated in a small power system in [1]. In this 

section, we will give results of testing it in a real large-

scale power system. The tested system is a provincial 

power system in China with150 generators. Table 1-7 

show the results of eigensolution analysis for selecting 

the installing locations in the power system for some 

lightly damped oscillation modes. For comparison, 

results of using the conventional method are also 

presented. 

 

From the results presented in tables below, it can be 

seen that selection made by the eigensolution-free 

method is exactly same as that made by the 

conventional method 

 

 

Table 1  mode 1 -0.000264+j10.297624  

 Bus name Conventional 

method 

Eigensolution-

free 

Gan Dongjin1# 1 1 

Gan Dongjin2# 0.919282 0.916108 

 

Table 2  mode 2 -0.003691+j7.817868   

bus name Typical method Eigensolution-

free 

Gan Dongjin2# 1 1 

Gan Dongjin1# 0.800776 0.795052 

Gan Wan’an3# 0.509840 0.467385 

Gan Wan’an4# 0.509840 0.467385 

Gan Wan’an1# 0.229635 0.210997 

 

 

Table 3  mode 3 -0.013503+j8.881832   

bus name Typical method Eigensolution-

free 

Gan Zhelin3# 1 1 

Gan Wan’an5# 0.120754 0.117752 

Gan Zhelin5# 0.117684 0.108348 

Gan Fenyi7# 0.104567 0.087921 

Gan Zhelin1# 0.037257 0.037253 

 

Table 4  mode 4 -0.027888+j8.415011   

bus name Typical 

method 

Eigensolution-free 

Gan Wan’an5# 1 1 
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Gan Wan’an3# 0.107613 0.100381 

Gan Wan’an4# 0.107613 0.100381 

Gan Wan’an2# 0.026426 0.024408 

Gan Wan’an1# 0.021286 0.019830 

 

Table 5  mode 5 -0.047967+j7.682415    

bus name Typical 

method 

Eigensolution-free 

Gan Wan’an1# 1 1 

Gan Dongjin2# 0.238606 0.171410 

Gan Dongjin1# 0.193703 0.164898 

Gan Wan’an2# 0.121561 0.139184 

Gan Wan’an4# 0.103880 0.099361 

Gan Wan’an3# 0.103880 0.099361 

Gan Wan’an5# 0.017337 0.016659 

 

Table 6  mode 6 -0.437879+j7.421339    

bus name Typical 

method 

Eigensolution-free 

Gan 

Gui’erqi1# 

1 1 

Gan 

Gui’erqi2# 

0.960338 0.896755 

Gan Wan’an2# 0.653062 0.614935 

Gan Zhelin5# 0.308348 0.243010 

Gan Jiusanqi1# 0.250573 0.237940 

Gan Jiusanqi2# 0.247190 0.058744 

Gan Wan’an1# 0.132535 0.058379 

Gan Dongjin2# 0.061440 0.055110 

Gan Dongjin1# 0.051210 0.045848 

Gan Wan’an4# 0.049057 0.013331 

Gan Wan’an3# 0.049057 0.008396 

Gan Fenyi7# 0.022908 0.008396 

 

Table 7  mode 7 -0.985128+j11.309529   

bus name Typical 

method 

Eigensolution-

free 

Gan Jingdezhen5# 1 1 

Gan Jingdezhen3# 0.092646 0.081072 

Gan 

Jinggangshan2# 

0.016967 0.014204 

Gan 

Jinggangshan1# 

0.015801 0.011189 

Gan Gui’erqi2# 0.009508 0.001171 

Gan Gui’erqi1# 0.007248 0.001095 

                 
 

4 Conclusions 
Eigensolution-Free method, a new approximate modal 

control analysis method, has been tested in a real large-scale 

power system in this paper, which is compared with 

conventional modal control analysis method. Results 

presented in this paper confirm that the eigensolution-free 

method can be used in a large-scale power system where the 

conventional method would become impossible if the system 

is very large. 
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