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Abstract:-This paper proposes a novel theoretical method in studying the capability of an energy storage 

system installed in a power system to enhance system oscillation stability. The proposed method is developed 

based on the well-know equal-area criterion and small-signal stability analysis. In the paper, some useful 

analytical conclusions are presented. Simulation results of an example power system installed with a Battery 

Energy Storage System (BESS) are given  and the extension to more complicated case of multi-machine power 

systems is also discussed briefly. This is part I of the paper.   
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1 Introduction 
Recent advance in new materials for energy storage 

and power electronics technology has made the 

energy storage systems (ESS) a new option to 

regulate and control modern power systems that have 

experienced dramatic changes recently. ESS can 

provide powerful means to rapidly vary real power 

and reactive power to improve system reliability and 

power quality. Commonly used energy storage 

systems are the Superconducting Magnetic Energy 

Storage (SMES), Battery Energy Storage Systems 

(BESS), Advanced Capacitors (AC) and Flywheel 

Energy Storage (FES) [1]. One important aspect of 

applications of the ESS in power systems is to 

enhance power system oscillation stability. 

In [2] and [3], improvement of power system 

stability by using Flywheel Energy Storage (FES) is 

investigated with positive results presented. In [4] 

and [5], integration of FACTS and ESS is thoroughly 

discussed and comparison of FACTS and ESS in 

improving power system stability is made with 

constructive suggestions proposed. In [6] and [7] 

implementation of Battery Energy Storage Systems 

(BESS) to enhance power system stability is studied 

and an example of field application is given, 

indicating a bright future of ESS in power system 

applications. Especially in [2]-[7], capability of ESS 

in providing power systems positive damping is 

addressed as one of the important features of ESS 

applications in power systems. It is confirmed and 

demonstrated through either simulation or field test 

that ESS can significantly improve power system 

oscillation stability. 

This paper presents analytical results on the 

capability of an ESS installed in a power system to 

suppress system oscillations. That provides an 

essential understanding and explanation on why and 

how the ESS can improve power system oscillation 

stability with some useful conclusions obtained. The 

analytical method used in the paper is a novel small-

signal approach based on the well-known equal-area 

criterion for a simplified case of the ESS installed in 

a power system, giving insight and guidance into the 

investigation of applying the ESS in more 

complicated power systems. All analytical 

conclusions are demonstrated by the results of 

computation and simulation, which are further 

confirmed by an example to apply a BESS in a 

power system to damp power system oscillations. 

Issues, such as the limitation of capacity of energy 

storage devices, suppression of large-disturbance 

oscillations and extension of the study in 

multimachine power systems, are also addressed in 

the paper. 

The organization of the paper is as follows. Firstly 

the capability of ESS in damping power system 

oscillations is studied by using a new small-signal 

analytical method proposed in the paper. Secondly 

some useful conclusions are drawn based on the 

analytical results that are demonstrated by simulation 

results. Those two sections are presented in part I of 

the paper. Thirdly an example power system installed 

with a BESS is presented to examine and verify 

theoretical results obtained in the paper. Finally, the 

extension of investigation to multimachine power 

systems, suppression of large-disturbance power 

system oscillations and a new concept of distributed 

damping of power system oscillations considering 

the capacity limitation of the ESS are given in the 

paper. Those two sections are presented in part II of 

the paper. Reference and conclusions are also given 

in part II of the paper. 
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2 Energy storage device integrated into 

power systems 
Considering a simple single-machine infinite-bus 

power system as shown by Figure 1, where a shunt 

energy storage device is installed at the busbar s. The 

energy storage device can be a FES, BESS, SMES, 

AC or their combination. When it is modelled in the 

power system, at the power system level, it can be 

represented by an AC voltage, CV , that is the voltage 

at the AC terminal of the VSC (Voltage Source 

Converter) of the energy storage device [9]-[10].  

 

 

 
Figure 1 An energy storage device in shunt 

integration to single-machine infinite-bus power 

system 

 

Figure 2 An energy storage device in series 

integration to single-machine infinite-bus power 

system 

 

From Figure 1 we have 
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Eq.(1) shows that the integration of the shunt energy 

storage device is electrically equivalent to a similar 

system when the energy storage device is installed 

and integrated to the transmission line in series, as 

the case shown by Figure 2. From Figure 2 we have 

 

VIjXVVIjXV tstsbCtstst +=++=   (2) 

 

Hence, in the following discussion, we will focus on 

the system integrated with the shunt energy storage 

device, since electrically Eq.(1) and (2) are same. 

 

If we consider that the generator is represented 

simply by a fixed EMF E’ behind a reactance X’, 

from Eq.(1) we can have the following voltage 

equation 

 

VI)X'X(j'jE ts ++=     

     

 

Phasor diagram based on Eq.(1) and (3) is shown by 

Figure 3, from which we have 
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Figure 3 Phasor diagram 

 

Hence linearizing Eq.(3), we obtain the variation of 

the active power delivered along the transmission 

line to be 

 

controltsdeltats PPP ∆+∆=∆                               (4) 
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The second component in tsP∆  is controlP∆ , the forced 

variation of active power due to the control by the 

energy storage device, which can affect the damping 

of power system oscillations. 

 

 

3 Voltage control implemented by the 

energy storage device 
A voltage control function can be implemented by 

the energy storage device to regulate the voltage at 

the busbar where it is installed, sV . This voltage 

control can be implemented by either changing cV , 

γ  or both through controlling the VSC. If it is 

implemented by controlling cV  only with fixed 

0γ=γ , for the simplicity of analysis, we assume it 

to be a proportional controller. That is 

 

)VV(KVV ssrefvolV0cc −+=  

 

Linearization of the above equation gives 

  

svolVc VKV ∆−=∆     (5) 

 

From Eq.(I) in Appendix I we have 
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Hence substituting Eq.(6) to (4) we can obtain 
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If the voltage control is implemented by controlling 

γ  only with fixed 0cc VV = , that is 

 

)VV(K ssrefvol0 −+γ=γ γ  

Linearizing the above equation and using Eq.(I) in 

Appendix I, we can obtain 
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Hence substituting Eq.(8) into (4) we can obtain 
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If the voltage control is implemented by changing 

both cV and γ , that involves exchange of active and 

reactive power between the power system and the 

energy storage device, we have  

 

)VV(KVV ssrefvolV0cc −+=  

)VV(K ssrefvol0 −+γ=γ γ  

 

Linearizing the above equations and from Eq.(I) in 

Appendix I we have 
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From details given in Appendix II, we should have 

 

δ∆=∆ 3deltacontrol CP     (11) 

 

Eq.(7), (9) and (11) indicate that in all three cases, 

the forced variation of active power delivered along 

the transmission line by the voltage control 

implemented by the energy storage device is 

proportional to the deviation of the rotor angle H. 

That is 

 

δ∆=∆+∆=∆ deltacontroltsdeltats CPPP   (12) 

 

Damping effect of the voltage control implemented 

by the energy storage device on the small-signal 

oscillations of the power system can be analysed 

based on the equal-area criterion as illustrated in 

Figure 4 and 5 as follows. 

In Figure 4, the group of parallel lines is the 

linearization of tsP - δ curves for small-signal 

analysis. At the steady state, the system operates at 

point ( 0δ , 0tsP ) on the linearized tsP - δ  curve in 

Figure 4. We assume that the oscillation starts from 

point a in Figure 4 that is due to a small disturbance. 

At point a, δ∆ >0 and the resulted increase of tsP  has 

two parts as shown in Eq.(12) illustrated by Figure 4. 

The first part is tsdeltaP∆  in Eq.(12), caused directly 

by δ∆ and the second is controlP∆  due to the voltage 

control of energy storage device, as shown in Eq.(12). 

When point a moves down with decreasing tsP , from 

1δ  to 0δ  the movement is along the line 

δ∆=∆ deltats CP  on a group of continuous tsP - δ  

lines above the line tsdeltaP∆  because 0>δ∆ . This 

forms area 1A . From 0δ  to 2δ , the movement is still 

along the line δ∆=∆ deltats CP  but on a group of 

continuous tsP - δ   lines below the line tsdeltaP∆  

because 0<δ∆  and it stops only when arrives at 

point b where 12 AA = . Obviously, we should have 

12 δ=δ  as the result of 12 AA = . Similarly, when 

point b moves up, it will not stop until it arrives at 

point c where 23 AA = , resulting in 23 δ=δ  as 

shown by Figure 5.  

 

 
Figure 4 Analysis of damping effect of the voltage 

control implemented by energy storage device on 

power system oscillation (1) 
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Figure 5 Analysis of damping effect of the voltage 

control implemented by energy storage device on 

power system oscillation (2) 

 

The analysis above indicates that the voltage 

regulation implemented by the energy storage device 

generates a forced deviation of active power 

delivered along the transmission line proportional to 

the deviation of power angle, that contributes no 

damping to power system oscillations. Hence we can 
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conclude that the voltage control implemented by the 

energy storage device will have little influence on the 

damping of power system oscillations.  

 

 

4 Damping control implemented by the 

energy storage device 
A damping control function can also be implemented 

by the energy storage device to improve power 

system oscillation stability. For the simplicity of 

analysis, we assume a proportional damping control 

law is adopted and damping feedback signal is the 

rotor speed of the generator. If it is implemented by 

controlling cV  only with fixed 0γ=γ , γ  only with 

fixed 0cc VV = , or both cV  and γ , that is, 

 

)1(KVV dampV0cc −ω+=   

)1(K damp0 −ω+γ=γ γ  

 

we have 

 

ω∆=∆ dampVc KV   

ω∆=γ∆ γdampK  

 

Substituting the above equations into Eq.(4), we can 

obtain 
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From Eq.(13) we can see that with the damping 

function implemented by the energy storage device, 

the forced deviation of active power delivered along 

the transmission line due to the damping control is 

proportional to ω∆ , ω∆=∆ Ddeltacontrol CP . This will 

contribute to the damping of power system 

oscillations, as the following analysis shows based 

on the equal-area criterion. 

 

Again we assume that the operating point of the 

power system at the steady state is at ( 0δ , 0tsP ) on 

tsP - δ curve. Due to a small disturbance, the 

operating point moves onto point a in Figure 6 where 

the oscillation will start from. At point a with an 

increase of δ∆ , the increase of tsP  is tsdeltaP∆  

proportional to δ∆  as shown in Eq.(4). When 

operating point a moves down, 0<ω∆ , 

ω∆=∆ Ddeltacontrol CP  will be added on tsdeltaP∆  that 

results in the operating point moves below the line 

tsdeltaP∆  (assuming 0CDdelta > ). As shown by Figure 

6, the operating point will stop at point c where 

0=ω∆  and the operating point comes back to the 

line δ∆=∆ tsdeltatsdelta CP . That is because at c 

ω∆=∆ Ddeltacontrol CP =0. According to the analysis 

of Figure 4 and 5 above, without 

ω∆=∆ Ddeltacontrol CP , area ‘acd’ should be equal to 

area ‘dgf’ that will lead to '21 δ=δ . With 

ω∆=∆ Ddeltacontrol CP , not only area ‘acd’ is reduced 

to 1A but also extra area is generated below the line 

δ∆=∆ tsdeltatsdelta CP  that is added to the required 

area ‘dgf’ as shown in Figure 6. Hence 12 AA =  will 

result in <δ2 '21 δ=δ , which indicates the 

oscillation is damped. 

 

 
Figure 6 Analysis of damping control implemented 

by the energy storage device (1) 

 

At operating point c, the accelerating area formed is 

‘cdh’ that is smaller than 2A  in Figure 6. 

Furthermore, when the operating point moves up, it 

will moves above the line δ∆=∆ tsdeltatsdelta CP  due 
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to the extra term ω∆=∆ Ddeltacontrol CP >0 because 

0>ω∆  as is shown in Figure 7. Hence the 

accelerating area is 3A  that is even smaller than area 

‘cdh’. In addition, the decelerating area increases and 

hence overall it results in 23 δ<δ , indicating the 

oscillation is damped. In addition, from the analysis 

we can see that with a higher proportional coefficient 

DdeltaC , the more decrease of iδ (i=2,3) will be 

obtained and hence the better damping effect 

implemented by the energy storage device can be 

achieved. 

 

Pts0

direction of 

A4

A3

a

b

c

Ptsdelta=Cdelta

Pdelta+ Pcontrol

Pcontrol=CDdelta

’

 
Figure 7 Analysis of damping control implemented 

by the energy storage device (2) 

 

 

5 Damping effect analysis of the energy 

storage device with both voltage and 

damping control functions 
Normally, the voltage control should be implemented 

via controlling cV  resulting in the exchange of 

reactive power exchange of the energy storage 

device with the power system. While damping 

control can be implemented by controlling γ  

through the exchange of active power or by adding 

onto the voltage control. 

 

Considering the first case that the damping function 

is through controlling γ , i.e. 
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we have 
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From Eq.(I) in Appendix I we can obtain 
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Substituting Eq.(14) and (15) into (4) we have 
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If the damping control is added on the voltage 

control of the energy storage device, i.e. 
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we have 
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From Eq.(I) in Appendix I we can obtain 
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Substituting Eq.(17) into (4) we have 

 

ω∆+δ∆=∆ Ddeltatacontroldelcontrol CCP   (18) 

 

where 
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Substituting Eq.(16) or (18) into (4), we have that for 

both cases above 

 

ω∆+δ∆=∆+∆=∆ DdeltadeltaDdeltadeltats CCPPP

                   (19) 

 

A similar analysis can be carried out as in Figure 6 

and 7 where the line δ∆=∆ tsdeltatsdelta CP  is replaced 

by δ∆=∆ deltadelta CP  that is similar to the line 

δ∆=∆ deltats CP  in Figure 4 and 5. The conclusion 

from the analysis will be that the portion of forced 

deviation of active power in Eq.(19), ω∆DdeltaC , 

contributes to the damping of power system 

oscillations. The higher DdeltaC is, the more damping 

is provided by the damping control of the energy 

storage device. 

 

 

Appendix I 
From Eq.(3) and Figure 3 we have 
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From Eq.(1) and Figure 1 we can obtain 
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So we can have 
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Appendix II 
From Eq.(10) we have 
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