
Evolving a model of transaction management with concurrency control for

multilevel secure distributed real-time database systems

Veluchandhar@Chandramohan , S.Albert Rabara

 kandiyerphd@gmail.com, a_rabara@yahoo.com

Department of Computer Science, St.Joseph’s College (Autonomous)

Tiruchirappalli – 620 002, India.

Abstract

The concurrency control in distributed database management

systems is an important research problem. Several

concurrency control algorithms have been proposed for

secure distributed real time database systems, and several

have been and are being implemented. Most of the

concurrency control algorithms are the variations of the

following basic techniques: Two-Phase Locking, Timestamp

Ordering and Serialization Graph Testing. These algorithms

may not be providing accurate performance model. In this

paper, it is proposed an algorithm model to enhance the

performance of concurrent transactions for multilevel

security for distributed database. This model reduces the data

access time and wait time for every transaction monitored by

the sub-query analyzer. Simulation study reveals that the

effective enhancement of performance for concurrent

transactions with different levels of security.

.

Keywords : Multilevel Security, Distributed Database,

Concurrency, Transaction , Performance.

1. Introduction

The importance of databases in modern businesses, public and

private organizations, banks, educational institutions and in

general day-to-day applications is already huge and still

growing. Many critical applications requires databases. These

databases contain data of different degree of importance and

confidentiality , and are accessed by a wide variety of users.

Integrity violations for a database can have serious impact on

business processes and disclosure of confidential data.

Traditional security provides techniques and strategies to

handle such problems with respect to database servers in a

non distributed environment. In a global enterprises the

database access is required round the clock. The Database

Management Systems (DBMS) has coincided with significant

developments today in distributed computing and concurrent

access technologies and this becomes the dominant data

management tools for highly data intensive applications. A

distributed database is a collection of multiple logically

interrelated databases distributed over a computer network. A

distributed DBMS is defined as the software system that

permits the management of the distributed database and

makes the distribution transparent to the users[1]

 In this scenario, Data Base management Systems (DBMS)

are designed to meet the requirements of performance,

availability, reliability, security and concurrency. The recent

rapid proliferation of Web-based applications and information

systems have further increased the risk exposure of databases

in a distributed environment and hence the data protection is

more crucial than ever. The data needs to be protected not

only from external threats but also from insider threats[2].

The solution to data security are classified into three major

categories : the protection of data against unauthorized

disclosure, prevention of unauthorized and improper

modification and prevention of denial of services. In addition

to the different levels of security , the DBMS is to provide

concurrent access of highly available data in the presence of

large and diverse user populations. Therefore it is obvious that

multilevel security must be provided to the DBMS mainly on

distributed environment. Concurrency control is an integral

part of the database systems. It is used to manage the

concurrent execution of operations by different transactions

on the same data with consistency. Several methods have

proposed to provide secure concurrency control to achieve

correctness and at reduced cost of high security level

transactions. One of the most important issues for

concurrency control in MLS database system is the cover

channel problem[3]. It naturally comes due to the contention

for the shared data items by transactions executing at different

security levels. The most common instances of totally ordered

security levels are the Top-Secret(TS), Secret(S), and

Unclassified(U) security levels encountered in the military

and government sectors. In this paper, it is proposed a model

to enhance the performance of concurrency for Multilevel

Secure Distributed Database System. This model allows users

to access a database concurrently from geographically

dispersed locations through use of concurrency control

locking algorithm.

The paper is organized as follows: The review of literature on

MLS distributed database and related issues on concurrency

control algorithms are presented in the Section-2. Section-3

presents the proposed multilevel secure distributed database

model. Section-4 presents lock based protocol for the

proposed concurrency model. Section-5 concludes paper.

2. Review of Literature

The operations of the database can be performed in the form

of transactions. Several units of works that form a single

logical unit of work can be called as a transaction. This can be

performed under supervision of transaction manager. A valid

transaction must be satisfied the Atomicity, consistency,

Isolation, Durability properties [3]. The transaction manager

can allow two or more transactions to access the same data

called concurrent transactions. The un-controlled concurrent

transaction leads to inconsistent database and violate the

isolation property. Hence, the transaction manager needs to

control the interactions between the transactions. To achieve

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 127

this task, transaction manager uses several concurrency

control mechanisms, such as locks, time stamps, etc.

James M. Slack [3] presented two security mechanisms: the

first mechanism is based on one–way protected group. One-

way protected group is a set of one-way protected objects.

Each one-way protected object in the group will accept

messages only from a distinguished object in the group called

the interface object. A one-way protected group supports data

integrity and access integrity. The second mechanism is two-

way protected group. It is an extension of one-way protected

group. Each object in the group could only send the messages

of that group. This model fails to address how security and

integrity policies are implemented with protected groups.

 Keishi Tajimia [4] has developed a technique to statically

detect the security flaws in OODBSs. He designed a

framework to describe the security requirements and

developed an algorithm to determine the security flaws. In

this technique a user can bypass the encapsulation and abuse

the primitive operations inside the functions and also the

properties of aggregate are not given.

Linda M. Null et al. [5] has defined security policy for object-

oriented data model. This security policy addresses mandatory

as well as discretionary access controls. This model is based

on the classes derive security classification constraints from

their instances and logical instances. The implementation and

suitability of these policies in the object-oriented environment

is not presented in their proposal.

Sushil Jajodia et al. [6] has proposed a database security

model for mandatory access control that details with the

Object-Oriented Data model. This includes a message

filtering algorithm that protects the illegal flow of information

among objects of various security levels. Finally a set of

principles is defined to design and implement security policies

in Object-Oriented Database Management Systems. This

model fails to address information flow are rendered

explicitly.

Roshan. K. Thomas et al. [7] gives a kernelized architecture

for multilevel secure Object-Oriented Database Management

Systems (DBMS's) which support write-up. However,

supporting write-up operations in object-oriented systems is

complicated by the fact that such operations are no longer

primitive, but can be arbitrarily complex and therefore can

take arbitrary amounts of processing time. This architecture

supports Remote Procedure Call (RPC) based write-up

operations. Dealing with the timing of such write-up

operations consequently holds less time.

Bertino et al.[8] proposed the practical relevance of nested

transactions and for the theoretical issues related to the

development of suitable locking mechanisms and

serializability theories for nested transaction. In particular, the

interactions between parent and child transactions in the same

nested transactions can be executed concurrently. This require

revise and extend primitives and the locking protocol,

however as it mentioned. Serializability theory for nested

transactions is substantially more complex.

Lin et al.[9] a simplified simulation model is used to compare

the performance of basic timestamp, multi version timestamp,

and two-phase locking algorithms. It doses not include

different data distributions(partitioned, replicated, etc.), and

simplified communication delay by combining CPU

processing time, communication delays, and I/O processing

time for each transaction.

Navdeep Karur et al.[10] have presented a simulation model

of a multilevel secure distributed database system using

secure concurrency algorithm. It addresses the performance

price paid for maintaining security in a MLS/DDBMS, but

performance of higher security level transactions in a

replicated database has not been studied.

Having studied the above literature, it has been identified that

most of the research efforts in the area of secure concurrency

control are focused on centralized databases. Concurrent

access of distributed database is mandatory for applications

like banking, financial, enterprises, industry and institutes

etc., Concurrent Transactions within a distributed database

management system face several restrictions. The proposed

model is designed to perform efficient, secured concurrent

transactions based on sub-query analyzer.

3. Proposed Model

The data stored in a database should be secured from the

unauthorized users. The data retrieval time is minimized by

the Lock Manager (LM). This manager handles the locking

mechanism for distributed sites. All transactions are sorted

through the security manager (SM).. The security manager

(SM) handles the authentication of the user using with proper

verification. The different query levels proposed in the model

are View level (SL(Du)) , Secret level (SL(Ds)) and Top secret

level (SL(Dt)). If the user is permitted access to the view

level, the query is limited with the view level transaction

(SL(Q)<SL(Du)) . Otherwise, the query is roll back to

Transaction Level security. Transaction level is also classified

into secret and top secret respectively upon the user

classifications.

The query optimizer further divides the query into various

levels for distributed access and creates a new optimized

query according to the data distribution. The Transaction

Manager (TM) pools the query in the transaction queue and

allows the transaction to be executed according to the load

balance of the transaction concurrency. The network traffic is

also considered by the Transaction Manager (TM). The

Transaction Concurrency Manager (TCM) again analyzes the

query and arranges the query for various levels of

concurrency. The waiting time stamp is used for each

transaction. The transactions are executed without

concurrency when the waiting time stamp is expired. So the

infinity waiting time of transaction is avoided. The waiting

time stamp for each transaction is proportional to the security

levels. The lock manager transmits the lock signal to the

entire distributed database sites. It allows the transaction to

update the data only when there is no objection from any

other sites. Otherwise, it rolls back the transaction. If there is

no objection from all other lock managers then it locks the

data. The transaction is rolled back by the lock manager if the

transaction exceeds the timestamp limit.. Thus the proposed

model felicitates to access data only after passing through

multiple security levels and also allowed to access

concurrently without any access conflict. The proposed model

is depicted in Figure1.

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 128

Figure 1. Proposed Model

3.1 Secure Concurrency Control Protocol

The various modules of the secure concurrency control

protocol including the concurrency components are

illustrated as follows:

The various modules proposed in the MLS framework

including concurrency components are briefly presented here.

The User Module (UM) handles the data for the accepted

users with their privileges. It is defined as a three tuple.

U=(Vs, D, M), where Vs is a verification code set, D is the

data which is associated with the user and M is the mode of

accessibility. The set Vs may be any one of security

mechanism such as Username and password, IP based

security and other hybrid security. User Log (UL) is

maintained by the User Module (UM).

The data stored in a database should be secured from the

unauthorized users. The security manager (SM) handles the

authentication of the user using proper verification. All

transactions are sorted through the security manager (SM).

The different query levels proposed in the model are View

level (SL(Du)) , Secret level (SL(Ds)) and Top secret level

(SL(Dt)). If the user is permitted access to the view level, the

query is limited with the view level transaction

(SL(Q)<SL(Du)) . Otherwise, the query is rolled back by the

Security Manager (SM) . Transaction level is also classified

into secret and top secret respectively based on the user

classifications. In the transaction level one can update the

data, but updation of data is not permitted in the view level.

Each user having their own level of access limits to the data.

Each transaction is permitted with the access limits controlled

by the Security Manager (SM).

The Query Optimizer is designed to optimize the quires

received from distributed locations. Let the set of sites (Si)

and each site S is having the set of fields (Fj). The fields F is

the sub set of sites S. Let Ti be any transaction which

involves the set of sites Si and output or condition fields TFi.

The site Si is eliminated from the query, if any one of the

fields Fj of Si does not belongs to the set TFi. This process

will eliminate the unnecessary sub transaction STi . So the

network and data computation cost is reduced. The procedure

is presented below.

void queryOptimizer(transaction T)

 TF[]=getOutputFields(T)

 TF[]=getComputationalFields(T) // add to output

 fields

 S[]=getDistributedDatabase(T)

 F[][]=getFields(S) //two dimensional table

match the each row F[x][] with TF[]

If F[x][] is not match with any TF[]

 eliminate S from T

The Site Manager (SMR) looks after all the distributed data

which is created or configured for the transaction. This helps

to secure the data from the unauthorized network access to the

services. The site manager sends the signal to its own network

boundary about the various locations of which data distributed

and its configuration. This helps to attach and detach of sites

over the network. The site manager has the details about the

sites (Si) and the associated fields (Fi). A transaction Ti is

rolled back , if the transaction wants to access field TFi in site

Si , which is not belongs to Si. The Site Manager (SMR)

handles the distributed sites and their locations. It also handles

the frequency of updating the records. So it assigns a time

stamp for each site. This time stamp is used for the transaction

analyzer for flush the Sub Query Results (SQR).

The Transaction Manager (TM) further divides the query into

various levels for distributed access and creates a new

optimized query according to the data distribution. The

Transaction Manager (TM) pools the transactions Ti in the

transaction queue and allows the transaction to be executed

according to the load balance of the transaction concurrency.

The network traffic is also considered by the Transaction

Manager (TM). Let Ti be any transaction and STij be any sub

transaction which is derived from the parent transaction Ti.

We can define dispatcher as a four tuple Ti= {ST, TS, DB,

CL}. Let ST be the sub transaction, TS be the time stamp,

DB be the database and CL be the listing port for the sub

transaction in the network. The transaction Ti is rolled back, if

its all sub transactions Si is not finished with in the timestamp

order. The transaction manager (TM) saves the sub query

result in the disk until it receives the updated message from

the database. So before sending the Sub Transaction (ST) it

checks its own Sub Query Results (SQR). For that reason we

can avoid repeated transaction for the same data. The

Transaction Dispatcher (TD) sends the sub query to various

sites. After completing that query it assembles the result and

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 129

produces the result. The dispatcher using the timestamp

mechanism for getting the results back.

The Transaction Analyzer (TA) analyzes the pooled

transactions arrived from various distributed locations using

the transaction log and creates the Frequently Accessed Fields

(FAF) table. It also set the expiry time for each record in

Frequently Accessed Fields (FAF) table. Using the

timestamp, the FAF table entry is flushed. Let Ti be any

transaction, TFi be a set of fields which is going to be access

by the transaction Ti, FAFi be any entry in FAF table, FAFTi

be the time stamp for record FAFi, FAFSi be the current state

of the Sub Query Results (SQR). The sub transaction STi for

any transaction Ti is allowed to access the other site, if there is

no entry in FAF table or the current state of FAFSi is cleared.

The Sub Query Results (SQR) is updated, if or the current

state of FAFSi is cleared and the sub transaction STi for any

transaction Ti is allowed to access the other site. Transaction

Analyzer (TA) flushes the Sub Query Results (SQR) when it

receives the updated message from any other site. The Sub

Query Results (SQR) is only for the transactions which are

frequently involved. SQR proposed in this model reduce the

unnecessary data access time and wait time for every

transaction.

Void Transaction Analyzer (Transaction T)

 TF[] = get output fields (T)

 TF[] = get computational fields (T) // add with output

 Fields

 S[] = get Distributed Database (T)

 For i = 0 to n

 If (FAF [i] is found for TF [i] and

 FAF[i] is not cleared)

 data [i] = get Data (SQR)T)

 Else

 data[i] = get Data(S,T)

 updata (SQR, data)

 Assemble all Data[i]

The Transaction Concurrency Manager (TCM) analyzes the

concurrent transactions Ti and arranges the transaction for

various levels of concurrency TCi. The waiting time stamp is

used for each transaction. The transactions are executed

without concurrency when the waiting time stamp is expired.

Thus the infinite waiting time of transaction is avoided. The

waiting time stamp for each transaction is proportional to the

security levels.

 Let T1,T2,…Tn be n transactions which can be

executed concurrently. Let Ui be the unit of a transaction for

any transaction Ti. The schedule S is created for the

transactions T1,T2,…Tn . The schedule S can be defined as a

two tuple. S= (U , T). where U is a unit and T is a transaction.

Let Unit Tree (UT) be the executed unit of transaction which

are waiting for commit. The node for the unit tree is

constructed when each unit transaction U is executed by the

concurrency manager. The Transactions (Ti) are associated

with the one-to-one mapping to the unit tree UT . The state

for the Unit Tree (UT) is marked as roll back tree when the

unit transaction of Schedule is failed. The Transaction

associated with UTi will not be executed in the Schedule if the

Unit Tree UTi is set by the Concurrency Manager(CM) . The

final commit is only after finishing the entire schedule. The

commit is only for the Unit Tree which are not marked as a

roll back tree by the Concurrency Manager (CM). The

According to this new concurrency algorithm, If the schedule

S is failed then there is no need to roll back the entire

transaction. The concurrent transactions of the proposed

model are shown in Figure 2.

The Lock Manager (LM) transmits the lock signal to the

entire distributed database sites. It allows the transaction to

update the data only when it passes all the clearance from all

security levels. Otherwise, it rolls back the transaction. If

there is no objection from all other lock managers then it

locks the data. The transaction is rolled back by the lock

manager if the transaction exceeds the timestamp limit. The

locking mechanism follows a non cyclic tree structure. If here

any cyclic tree is formed by the transaction Ti then the Ti is

rolled back. Hence the deadlock is prevented. Thus the

proposed model felicitates to access data only after passing

through multiple security levels and also allowed to access

concurrently without any access conflict.

Figure 2. Concurrent Transactions

3.2. Concurrency Control Algorithm

Distributed database management system (DDBMS) allows

users to access a database concurrently from geographically

dispersed locations interconnected by a network. Concurrent

accesses to the database have to be synchronized in order to

maintain data consistency and to ensure correctness. This is

achieved through use of distributed locking protocol which is

applied in this proposed model. The efficient method of

implementing concurrency is depicted in Figure 3 and

presented in this section.

Let Tu denotes the unclassified security level transaction. Let

Ts denotes the secret security level transaction and Tts denotes

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 130

the top secret security level transaction, i.e. SL(Tu)≤

SL(Ts)≤SL(Tts).

Let r(x) and w(x) be the read and write of data item x

respectively.

Based upon the above assumption, the following conflicts

may occur:

(i) (Read-down conflict among different levels):

Read-down conflict occurs between SL(Ts)≤SL(Tts)’s read

operation, r[x], and SL(Tts)’s write operation, w[x].

(ii) (Read-write conflict at same level): Read-write

conflict occurs between SL(Ts)i’s read operation, r[x], and

SL(Ts)j’s write operation, w[x]. Where SL(Ts)i, SL(Ts)j and x

are at the same security level.

(iii) (Write-write conflict at same level): Write-

write conflict occurs between SL(Tts)i’s write operation, w[x],

and SL(Tts)j’s write operation, w[x]. Where SL(Tts)i, SL(Tts)j
and x are at the same security level.

Every transaction in this security model must obtain a read

lock before reading a data item and a write lock before

writing a data item. The security model allows a transaction to

issue read-equal, read-down and write-equal operations. This

is sufficient to prove that security is not violated through data

access. The execution of a distributed transaction T is divided

into sub-transactions Ti , where i=1 to n.. A sub-transaction Ti

is sent to the node Ni where the data is available and executed

under the local security and concurrency transaction manager.

If a sub-transaction fails, then the parent transaction is rolled-

back and restarts after some delay to avoid repeated restart.

The TLM (Transaction Lock Manager) determines at which

node data items requested by a transaction are located. If the

data is available in the parent node Ni, it is accessed in the

same node Ni otherwise, if there is no local copy and multiple

copies exist at more than one node, then one copy is randomly

selected and locks other copies of the same data. It creates one

sub-transaction for each node Ni that needs to be visited and

acts as the coordinator in the distributed two-phase commit

process. Even though the dispatches of sub-transactions of a

transaction appear sequential, they are dispatches

concurrently. Parent transactions originate from a fixed

number of terminals and their number in the system is the

sum of terminals connected to each node. This methodology

is diagrammatically depicted in Figure 3.

Figure 3. Secured Concurrency Control

The CTM (Concurrency Transaction Manager) coordinates

concurrency control activities with other nodes. In the case of

data replication, it implements a read-one-write-all policy for

read requests. For a write request, it consults all nodes that

hold a copy of the desired data item. A DM (Data Manager) at

every node contains information about data distribution and

replication.

Let V1 be the set of transactions V1={T1,T2, …, Tn} and V2

be the set of Distributaded Databases

V2={DB1,DB2,…,DBn}. The set of all links E={e1,e2,…em}

connecting from Ti where Ti ∈V1 to DBj where DBj ∈V2

denotes the transaction Ti can access the data on the

distributed database DBj as illustrated in the Fugure 3.

A bipartite graph is a triple G = (V1, V2, E) where V1 and V2

are two disjoint sets of vertices, respectively the top and

bottom vertices, and E ⊆ V1 X V2 is the set of edges.

The difference with classical graphs lies in the fact that edges

exist only between top vertices and bottom vertices.

Two degree distributions can naturally be associated to such a

graph, namely the top degree distribution (V1 k)

 V1k = --------------------------

Where d(t) denotes degree of a vertex t

and the bottom degree distribution (V2 k),

 V2 k = -------------------------

A transaction cannot request additional locks once it has

issued an unlock action. It holds on to all its locks(read or

write) until it completes. A top secret security level

transaction must release its read lock on a low data item when

a unclassified security level transaction requests a write lock

| {t ∈ V1: d(t) = k}|

| V1 |

| {t ∈ V2: d(t) = k}|

| V2 |

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 131

on the same data item and the aborted top secret security level

transaction is restarted after some delay. Thus multiple

transactions are performed simultaneously with minimum

cost.

Table-1 shows the access permissions in the proposed model

 Data

 Items

Transactions

SL(xul)

SL(ysl)

SL(zts)

SL(Tts) r[x] r[y] r[z],w[z]

SL(Tsl) r[x] r[y],w[y] -

SL(Tul) r[x] - -

Table 1

Concurrency Control Algorithm

void concurrency(transaction T)

 U[]=divide the transaction into various unit of

transaction

 Analyze the transactions, which are in the queue

 Create the Schedule for the various units of transaction

 While(schedule finish)

 U= next unit to be executed

 UT=the Unit Tree associated with U

 If (UT is not marked as roll back tree)

 Execute the unit (U) in the schedule

 If(U is success)

 Place U in the Unit Tree (UT)

 else

 mark the Unit Tree (UT) as roll back tree

 while(all unit tree UT in CM is traversed)

 if(UT is not marked as roll back tree)

 commit the Unit Tree UT

 else

 reject the transaction Ti which is associated

 with Unit Tree UT

4. Simulation Results

The protocols for evaluating the performance of concurrency

control is tabulated. This evaluation is based on the

performance presented in [11]. The aim of this experiment is

to test the transaction performance with the proposed

concurrency algorithm. The model is simulated in a real time

environment presented in Table 2.

Parameter Value

NumDBS 5

No. Query / sec 31

No. CPU 5

Disk for each site 5

Log disk 1

Concurrent Transaction / sec 11

Write ratio 6

Read ratio 25

Waiting time out transaction 4

Execution time 0.0715 s

Schedule Execution time 0.2015 s

Transaction size 10 records

CPU time / unit 0.0119 s

Network delay 0.01 s

Time for optimize 0.002

Time to partition 0.014

 Unit / transaction 6

Table 2. Simulation Parameters

The performance study is carried out with varying time factor.

The number of transactions is directly proportional to the

increased level of security with varying time factor. Let NT

be the number of transactions and TT be the time to finish the

transactions then,

NT ∝ 3.525 TT

The time for executing the transaction is directly proportional

to the security level also. Let SL be the security level and TT

be the time to finish the transaction then,

TT ∝ 1.1928 SL

The simulation results graphically represented in Figure 4,5

and 6 shows that the performance of concurrent transactions

increased with the transactions arrival rate is increased. The

performance of the transaction is high when the number of

distributed database is increased.

Figure 4. Transaction time vs Arival rate

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 132

Figure 5. No of rollback vs Arival rate

Figure 6. Transaction time vs No. of sites

5. Conclusion

Distributed database systems today play a reality. Several

organizations are now deploy distributed database systems.

Security is a serious concern a while accessing data. Different

security levels need to be integrated into the database to avoid

access conflict. We have proposed a new model for Multilevel

Secure Real-time Database Systems(MLSDD) and deployed

concurrency control for the secured access of data. The

simulation study reveals that the performance of concurrent

transactions is enhanced with multiple levels of security over

the distributed database. This model can be applied for any

real-time environment such as, corporate, financial

enterprises, academic institute etc., performing day-to-day

transactions in a distributed environment cutting edge to

different levels of security.

6. References

[1] Elisa Bertino, Ravi Sandhu, “Database Security –

Concepts, Approches, and Challenges” IEEE Transactions on

Dependable and Secure Computing, Vol 2, No 1, Jan-Mar

2005.

[2] M.Tamper Ozsu, Patrick Valduriez,

“Distributed and Parallel Database Systems”, ACM

Computing Surveys , Vol – 28, No. 1, March 1996.

[3] James M. Slack, “Security in an Object-Oriented

Databases,” Proc. Of ACM Transactions, pp 155-159, 1993.

[4] Keishi Tajimia RIFMS, Kyoto University Japan, “Static

Detection of Security Flaws in OODBMS,” ACM SIGMOD

international conference on Management of data SIGMOD

'96, Volume 25 Issue 2, pp 341 – 352, June 1996.

[5] Linda M.Null, “The DIAMOND Security Policy for

Object-Oriented Databases”, ACM annual Conferece on

Communicaions, page 49-56, 1992

[6] Sushil Jajodia, Boris, Kogan, and Ravi S.Sandhu, “A

Multilevel Secure Object-Oriented Data Model,” Proceedings

of ACM SIGMOD, pp 596-616.

[7] Roshan K. Thomas and Ravi S. Sandhu, “A Kernelized

Architecture for Multilevel Secure Object-Oriented Databases

Supporting Write-Up”, Journal of Computer Security, 1993.

[8] E.Bertino, B. Catania And E.Ferrari, “A Nested

Transaction Model for Multilevel Secure Database

Management Systems”, ACM Transactions on Information

and System Security, Vol. 4, No. 4, November 2001, pp. 321–

370.

[9] W. Lin and J.Nolte, Basic Timestamp, Multiple version

Timestamp, and Two-phase Locking, In Proceedings of 9th

International Conference on VLDB Conference, Florence,

Italy, 1983.

[10] Navdeep Kaur, A.K.Sarje and Manoj Misra, Performance

Evaluation of Concurrency Control Algorithm for Multillevel

Secure Distributed Databases, IEEE Compter Society, 2004.

[11] Ming Xeoing et al.., “Mirror : A State Consciious

Concurrency Control Protocol for Replicated Real Time

Database”, Journal of Information Systems, No 27, 2002, pp.

277-297.

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 133

	Text4:

