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Abstract:  - The scope of this paper is to present, both from a theoretical and a practical viewpoint, the 
problem of the thermal boundary-layer approximation for free convection flow in a porous medium bounded 
by a vertical flat plate (wall). The influence of the wall temperature and heat flux on the problem solution is 
discussed. 

We present numerical results for the problem of steady free convection using approximation models of 
Navier-Stokes equations. As target example we consider an unbounded porous medium in a gravitational 
field, saturated with a fluid at temperature T∝ containing a longitudinal line heat source. We limit our study 
to a heated flat plate. The mathematical models were integrated numerically using the fourth_order Runge-
Kutta method. Also we present the numerical results of the velocity distribution in brief. 

 
Keywords: - Fluid mechanics; Similarity solutions; Numerical simulation. 

 

1   Introduction 
Thermal flow or natural convection occurs in a lot of 
practical problems in many branches of engineering 
and geophysical applications (geothermal energy, 
building thermal insulation, enhanced oil recovery, 
solid-matrix heat exchangers etc). Such problems 
arise when a heated vertical plate is embedded in an 
unbounded porous medium. At high Rayleigh number 
the most part of the convection is in a thin layer 
around the heated source.  

There is a large literature in the area of 
approximation of boundary layer in porous medium 
so that we shall not present it in details. Our goal is to 
present the results of the numerical simulation of the 
system in some practical assumptions. In this work 
we present  lumped-parameter models involving 
ordinary differential equations. In this way we reduce 
a hyperbolic equations system to a system of ordinary 

differential equations where there is a lot of 
numerical models. 

In our target example, the mathematical model of 
the system is described by Navier-Stokes equations 
that are partial derivatives equations. The solution of 
this model can be obtained by numerical methods. 
The difficulties in the solution of Navier-Stokes 
equations were strong motivations for development of 
new simplified models. In some assumptions, the 
mathematical model is reduced to a lumped-
parameter non linear equation so that a practical 
solution can be obtained by numerical procedures. 
But in the last case there is a large literature so that 
we have the advantage to use it. 

In this paper we present some computational 
aspects for the classical two-dimensional laminar 
incompressible boundary layer flow past a flat plate.  
The thermal boundary-layer approximation is based 
on the assumption that convection takes place in a 
thin layer around the heating surface. The parameter 
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that gives the possibility of this approach is the 
Rayleigh number. In our case the motion takes place 
at high Rayleigh numbers. 

It is proved by physical considerations that the 
vertical velocity and temperature distributions are of 
the same shape. At the wall the vertical velocity 
varies in the same way as prescribed wall 
temperature. This fact is a consequence of the 
conditions imposed at infinity for velocity and 
temperature. 

We simulated the phenomena arising in the 
thermal boundary layer by taking some classical 
models and examples. 

 
 

2  Mathematical modelling 
Our target example is a heated semi-infinite vertical 
flat plate embedded in an unbounded porous 
medium in a gravitational field, saturated with a 
fluid at temperature T∝at rest. The heat source is the 
plate temperature and has a line form. 

Let us consider a rectangular Cartesian co-
ordinate system with the origin fixed at the leading 
edge of the vertical surface with the x-axis directed 
upwards along the wall, and y-axis directed to 
normal to the surface. Mathematical model is 
defined by a system of partial derivative equations 
[1]: 
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The significances of the variables from Eq. (1) to 

(5) are: 
• u, v – Darcy speed components in the directions 

Ox and Oy 
• ρ, µ, β – density,  viscosity and the coefficient of 

the thermal expansion of the fluid 
• k – permeability of th6 porous medium 
• λ – coefficient of thermal diffusivitty 
• p - pressure 
• T(x,y)- temperature in the point (x,y) 
• g – acceleration due to gravity 

The subscript ∞  means the value of the 
temperature at infinity. 

It is proved that at large Rayleigh numbers, the 
most important part of convection takes place in a 
thin layer around the heated plate. In this case the 
mathematical model is a third order non-linear 
ordinary differential equation depending on a 
parameter related to the temperature on the wall. 

We distinguish some practical cases: 
• The wall temperature is uniform 
• The wall temperature is nonuniform with a 

prescribed law 
• The heat flux is uniform 
• The heat flux is nonuniform 
For example, ones of the boundary conditions for 

the model (1)-(4) are: 
0)0,( =xv     (6) 

0,.)0,( >+∞= AxATxT
α  (7) 

In other words the wall temperature is a power 
function of distance from the origin.  From physical 
considerations, the boundary conditions at a great 
distance from the wall are: 

0),( =∞xu    (8) 

∞=∞ TxT ),(    (9) 

In the professional literature the mathematical 
model described by (1)-(4) may be simplified by 
using by using boundary layer approximations 
similar to the method of Prandtl for the classical 
theory of a boundary layer in a free viscous fluid. 

In the fluid mechanics theory, the Blasius 
equation appears in some boundary layer problems 
and we look for solutions having a similarity form. 
More, the Blasius equation is a particular case of  
Falkner-Skan model. For example, if the 
temperature of the plate is constant, the 
mathematical model for the motion of an 
incompressible viscous fluid near a semi-infinite flat 
plate is Blasius equation [2]: 

),0[0''

2

1''' ∞∈=+ yfff    (10) 

with the boundary conditions: 
0)(',1)0(',0)0( =∞== fff  (11) 

Eq. (10) was obtained by  dropping some terms 
in the Navier-Stokes equations. 

In the case the prescribed temperature of the 
plate is by the form (7), a method similar to those 
proposed by Prandtl leads to the equation [2]: 
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 (12) 

It is obviously that Blasius equation is a 
particular case of Eq. (12) for α=0. 

In these mathematical models we identify some 
physical constraints that limit the space of the 
solutions. One of these physical constraints is: 
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),0[1)('0 ∞∈∀≤≤ ttf  (13) 

Consequently, we have two solution types: 
• A mathematical solution for the problem 

with the boundary conditions described by 
(10) 

• A physical solution for the problem with 
boundary conditions (11) and (13) 

It is obviously that the mathematical solution 
does not depend on physical solution, but from the 
engineer’s viewpoint we must find the physical 
solution. The non-existence and uniqueness of the 
solution remains an open problem. 

In this work we investigate the boundary value 
problem from numerical viewpoint. We have a 
bilocal problem so that an iterative procedure must 
be used for the numerical solution. We transform the 
bilocal problem in a Caughy problem and a 
fourth_order Runge-Kutta method was used. 

In a previous work we presented the numerical 
results for two practical case: the uniform 
temperature of the wall and the case with 
nonuniform temperature of the wall. 

Interesting results are obtained if the vertical flat 
plate embedded in the porous medium is assumed to 
have a non-uniform temperature or if a non-uniform 
heat flux is assumed. In these interesting cases the 
mathematical models in dimensionless variables and 
functions that take account of the non-uniformity of 
the temperature or heat flux on the plate, are 
ordinary differential equations. In professional 
literature the transformations of the initial variables 
and variables of similarity are presented in details so 
that in this work we use the final mathematical 
models. 
Case a. The non-uniform temperature of the wall 

This interesting case corresponds to a non-uniform 
wall temperature defined by formula (7), assumption 
that leads to the mathematical model defined by Eq. 
(12) with the boundary conditions: 

0)0( =f  

1)0(' =f            (14) 

0)(' =∞f  

We introduce the initial values Caughy problem 
by conditions: 

0)0( =f  

1)0(' =f             (15) 

bf =)0(''  

The value of the parameter b must be selected so 
that the final value of f’ must be zero. 

 
Case b. The non-uniform heat-flux of the wall 

In this particular case the mathematical model is 
described by the ordinary differential equation: 
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with specified boundary conditions: 
0)(',1)0(',0)0( =∞−== fff  (17) 

 
 

3  Numerical results 
The numerical simulation of the heat transfer guided 
the work from a surface embedded in a porous 
medium through which a liquid is flowing. The 
surface temperature and the heat flux are non-
uniform. 
 
Case a. The non-uniform temperature of the wall 

The differential equation (12) can be rewritten as a 
system of differential equations of the first order. 
For this we define the set {z1, z2, z3}={f, f’, f”}. 
The equations system is the following: 

2'1 zz =  
3'2 zz =               (18) 

2)2(31
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1
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+
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α
 

with the boundary conditions: 

z1(0)=0 

z2(0)=1         

z3(0)=b 
The real parameter b must be determined so that 

the conditions (14) are fulfilled. 

With the notations z1(tk)=zk,1, z2(tk) =zk,2 and 
z3(tk)=zk,3 , the curves for the unknowns are plotted 
in Fig. 1. We used the program Mathcad [4]. We 
considered the particular case α= - 0.33 and the 
results are for the initial condition f”(0)=-0.01.  

In Fig. 2 the curve for f’ is plotted. It can be seen 
that the conditions defined by relationships (14) are 
fulfilled. 

3
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Fig.1- Case of non-uniform temperature 
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This case was treated in many works for different 
values of the parameter α. The problem is not the 
value of this parameter and the approach to select 
the value of the parameter µ. The problem is open. 

Case b. The non-uniform heat-flux of the wall 

The differential equation (16) with the boundary 
conditions (17) was solved by fourth_order Runge-
Kutta method.  In Fig. 3 the curves for {f, f’, f”} are 
plotted in the case α=-0.5.  

 
 

4 Velocity distributions  
Another aspect in the boundary layer flow is the 
velocity distributions outside the boundary layer.  
We limit our discussion to some numerical results 
for two-dimensional incompressible, laminar, 
steady-state boundary layer. The mathematical 
model is described by the Prandtl equations [4] :  
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where (x, y) denote the usual orthogonal Cartesian 
co-ordinates with axis Oy normal to the wall and 
axis Ox  is the wall surface. The variables u and v 
are the corresponding velocity components, and the 
constant ν is the kinematic viscosity. The function ue  
is a given exterior streaming velocity flow. In our 
example ue is assumed to be a function of the single 
variable x and represents the limit of u (x, y) as 
y→∞. 

In the history of this problem, the works of 
Blasius (1908) and Falkner and Skan (1931) were 
pioneering works. They considered the external 
velocity as being: 

0,, >∞∞= u
m

xueu   (21) 

The problem has solutions having a similarity form 
if the velocity distribution outside the boundary 
layer is proportional to xm. Using the well-known 
stream function we can obtain similarity solutions 
solving an ordinary differential equation. A special 
case is for m= -1when the mathematical model is 
defined by the equation: 

012)'("''' =−++ fff γ   (22) 

with the boundary conditions: 
1)(',)0(' =∞= ff ζ  (23) 

where ζ is a subunitary real number, and γ is a 
positive real number that plays the role of 
suction/injection parameter [3]. 
 
 
4.1. Numerical results 
For numerical solution of the Eq. (22) we replace 
f’=θ and Eq. (22) becomes a second order 
differential equation by the form [3]: 

012''' =−++ θγθθ   (24) 

with boundary conditions: 
1)(,)0( =∞= θζθ   (25) 

This bilocal problem can be transformed in a 
Caughy problem if the boundary condition at 
infinity is replaced by the condition θ’(0)=d, where 
d is a real number that can be obtained by an 
iterative procedure so that the condition (25) is 
fulfilled. In the numerical simulation we can 
determine the maximal interval of existence, that is 
a finite interval (0,Td). 

We shall not present the details of the analysis. 
In a numerical simulation we can do tests to find the 
velocity profiles and do analysis in the phase plane 
(θ,θ’). In this way we can do a stability analysis. 
Theoretically it was proved that the system is 
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Fig.2- Variation of  the function f  
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Fig.3 - Case of non-uniform heat flux 
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asymptotically stabile if γ >0 and unstable for 
negative γ.  

We used the fourth-order Runge-Kutta method. 
The mathematical model defined by Eq. (24) was 
written as a system of the first-order differential 
equations. The results were obtained with the 
software Mathcad where zk,0 represents the argument 

and zk,1 and zk,2 represent the state variables (θ,θ’). 
In Fig. 4 the curves are shown for some 

particular values of the initial conditions. The 
parameter values are the following: ζ=0.2, d=-1.3 
and γ=0.5.  

In Fig. 5 the diagram in the phase plane is 
plotted. The point (1,0) is an equilibrium point of 
focus type. 
 
 

5  Conclusions 
In this work we presented some aspects in non-
linear analysis of natural convection in a horizontal 
porous layer of infinite extent.  The mathematical 
models describing the temperature distribution were 
solved by an iterative method as fourth_order 
Runge-Kutta method. 

We presented simplified models for Navier-
Stokes equations considering the thermal boundary-
layer approximation for large Rayleigh numbers. 
The methods used to study the thermal boundary 
layer are similar to those from the theory of a 
viscous boundary layer.  This similarity is formal 
because the physical significances of the model 
variables are different. A real interpretation of the 
physical significances must be carefully done. For 
example, in porous media the velocity near the wall 
is tangential and has a maximum value and in 

classical boundary-layer theory the velocity is zero 
at the wall. 

We presented some examples for steady-state 
free convection in a porous medium adjacent to a 
vertical, semi-infinite flat wall. The problem of 
transient free convection with a step increase in wall 
temperature or surface heat flux is of great 
importance for the engineer. The complexity of the 
phenomena by singularities that appear in solution 
involves more computing resources and will be 
treated in some future works. 

We limited presentation to numerical results 
obtained by a one-step method as fourth_order 
Runge-Kutta method. The bilocal problem was 
transformed in a Caughy problem. The numerical 
model was solved by an iterative procedure. The 
convergence of the method depends on the first 
initial approximation of Caughy problem.  

A brief description of the numerical simulation 
of the solutions of Falkner-Skan boundary layers 
were presented for a particular velocity profiles.  
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