
Calculation of MTTF values with Markov Models for Safety Instrumented 

Systems  

BÖRCSÖK J., UGLJESA E., MACHMUR D. 
University of Kassel 

Department of Computer Architecture and System Programming 
Wilhelmshöher Allee 73 

Germany  
 

 
 
Abstract: - This paper deals with the calculation of MTTF values with the help of Markov models. It shows what Markov 
models are and how they can be utilised to achieve valid and important information for safety instrumented systems. In 
few examples the different calculations steps are presented, detailed and examined. 
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1 Introduction 
Probability calculation is applied to predict future events 
or development with the help of stochastic models. 
Additional, it is possible that a stochastic process behaves 
in periodic manner. Simple description of such 
relationships was done by the Russian mathematician 
Andrei Andrejewitsch Markov (1856-1922).With so 
called Markov chains, it is possible to describe and 
examine stochastic processes over a longer period 
without a lot of difficulties, which makes them very 
interesting to observe future events. Andrei Markov was 
born in Rjasan, Russia. He studied under Professor 
Pafnuti Tschebyschow (often in Literature stated as 
Tschebyscheff or Tschebyschev) in St. Petersburg and 
became member of the academy of science in 1886. 
Markov is known for this developed theories of 
stochastic processes. In 1913, he calculated the characters 
sequences in Russian literature to proof the necessity of 
independency of the law of large numbers. The 
calculations can also be used to state the quality of 
shapeliness of the orthography of character chains. From 
this approach were general stochastic tools developed, 
the so called stochastic Markow process, which can be 
used to predict future events or developments on base of 
current knowledge. Today’s application using hidden 
Markov models for voice recognition software. Markov 
chains and Markov inequalities are named after Andrei 
Markov. 

2 Basic Theory of stochastic 

Processes 
Since Markov chains are stochastic processes, 
fundamental concepts and terms have to be defined and 
described first. A stochastic process describes a sequence 
of stochastic experiments, which can be expressed by a 

function X(t) wit t ∈ T. T is the amount of all possible 
points in time of the system and is stated as parameter 
space. It T possesses only integer elements is the system 
time discrete and if T contains real elements the system is 
called continuous in time. Besides the amount of time 
points, a states space exists as well, which is often 
described as M or Z. The state space is the number of 
states a system can occupy. These states have to be 
independent, since the system can only be in one state. If 
a fixed number of states exists, then the space is discrete 
otherwise is it continuous. In the next few examples 
different architectures of Markov models will be detailed. 

2.1 Simple examples of Markov models  
A Markov models primarily knows two system states. 
Either the systems is operating, that means the system is 
fully functioning without errors, or the system is out of 
order, which means the system is in state which has a 
dangerous failures. States are presented as circle and a 
transition is shown as a transition line as presented in Fig 
1. 

State

Transition rate

State

Transition rate

 
Fig. 1: Representation of a Markov model 

Changes a state to another, then this will be presented  
with two circles and a transition line or transition arch. It 
has to be assured that the direction of the arrow points 
towards the new state. Generally, a Markov model can 
have two different systems. The first system possesses a 
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no repairable component the second system has a 
repairable element. Non repairable systems, cannot be 
repaired if a dangerous failure occurred, except the faulty 
component gets exchanged. Figure 2 shows such a 
system. 

System
ok
Z0

λ

System
failed

Z1

System
ok
Z0

λ

System
failed

Z1  
Fig. 2: Non repairable system with Markov model 

The system ins operating in state Z0. After a certain time 
the system changes from state Z0 according to a transition 
rate or failure rate λ into state Z1: the system has failed. 
The state Z1 represents the condition, when the system is 
our of order. To change the condition, the system’s 
component has to exchanged, since the system cannot be 
repaired. 
Repairable systems, are systems which can be brought 
into fully operation when after a dangerous failure 
occurred the system is getting repaired. Figure 3 shows 
such a architecture. 

System
ok
Z0

λ

System
failed

Z1

µR

System
ok
Z0

λ

System
failed

Z1

µR  
Fig. 3: repairable system as Markov model 

After a system changes its state from Z0 (fully 
operational) to Z1(failed), the system can be brought after 
a certain time, here repair time R, into the fully 
operational state Z0. In the next section the transitions 
will be mathematically described. 

3 Mathematical description of state 

transitions 
The transition probability from current states to other 
states can mathematically be described. Migrates the state 
Zj within a time interval dt into the state Zk, then 
transition probability exists for the two states. This can be 
described as: 
 

( ) dtpZZp jkjkkj ⋅==→ λ              (1) 

where as λjk is the transition rate and it has to be valid 
that λjk ≥ 0. When for example λjk = 0 then this means 
that the a transition for state Z0 to state Z1 is not possible. 

The question might be risen how a transition from state 
Z0 to the same state Z0 within the time interval dt can be 
expressed. This is illustrated in equation 2: 

( )

);,...,2,1,0;,...,2,1,0(with 

1
0

kjnknj

dtpZZp
n

k

jkjjkj

≠==

⋅−==→ ∑
=

λ
           (2) 

 
The second term in equation 2 can be simplified as: 
 

dtdt jj

n

k

jk ⋅=⋅∑
=

λλ
0

              (3) 

 
Inserting equation 3 into equation 2 results in: 
 

( ) dtpZZp jjjjkj ⋅−==→ λ1             (4) 

 
Applying equation 4 for state Z0,with a transition to the 
same state, results in: 
 

dtpp jj ⋅−== 0000 1 λ               (5) 

 
To present all states of a Markov model a transition 
matrix is used. The general form of this matrix is shown 
in equation 6: 
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Using the transition rates as in equations 4 and 5, 
equation 6 becomes: 
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With the transition matrix P all states transitions of an 
arbitrary Markov model architecture can be described. If 
no direct connection between two states exists then this 
will be represented the matrix with a zero. To ensure that 
a transition matrix of an arbitrary Markov model is 
correct, all parameters can be summed up. Is the result of 
the summation equal to one, then the matrix is correct. It 
has to be mentioned that the P-Matrix as shown in 
equation 7 represents the initial state of the system at 
T=1. If a transition matrix at time T=3 should be 
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calculated then the initial P-matrix has to taken by the 
power of three as shown in equation 8: 
 

( ) ( ) ( ) ( ) ( )[ ]311113 ===⋅=⋅=== TPTPTPTPTP        (8) 

 
The next section shows how the MTTF (Mean Time To 
Failure) of Markov models can be calculated: 

4 General mathematical description 

of MTTF 
MTTF stands for Mean Time To failure and gives the 
mean time between to failures of a system. To calculate 
the MTTF value for a system described with a Markov 
model, the transmission matrix for Markov models is 
necessary. The following steps are necessary to 
determine the MTTF for a system. 
 
•  First step: Determine the Q-matrix: 
 
The reliability matrix also known as Q-matrix can be 
derived from the P-matrix. To determine the Q-matrix 
from the P-matrix some criteria has to be fulfilled and 
observed. Firstly, the system has to be in an operational 
mode and absorbing states do not exist. Secondly, the 
following states are excluded, which are safe states and 
dangerous undetected states. An absorbing state 
possesses either a transition to a safe state or to a failure 
free state and has not other transition. Therewith the Q-
matrix can be determined. 
 
• Second step: Determine the M-matrix: 
 
After the Q-matrix is established, the M-matrix has to be 
derived. Therefore the Q-matrix has to subtracted from 
the unity matrix, as shown in equation 9: 
 

QIM −=                (9) 

 
• Third step: Determine the N-matrix: 
 
The N-matrix is established with the help of the M-
matrix. The N-matrix is the inverse of the M-matrix as 
shown below: 

[ ] 1−
= MN              (10) 

 
• Fourth step: Determine the MTTF value 
 
To calculate the MTTF value from a system described as 
a Markov model the sum of all elements from the first 
row of the N-matrix has to be calculated. With these for 
steps the general MTTF calculation for Markov models is 
finished. 

4.1 Examples for a P-matrix 
The P-matrix should be derived from the Markov model 
shown in Figure 4. 
 

Z0

0.01

Z1

0.5

0.50.99

Z0

0.01

Z1

0.5

0.50.99

 
Fig. 4: Simple Markov model 

Since the Markov model has only two states, the P-matrix 
has a dimension of 2x2. The general P-matrix of this 
architecture is shown in equation 11: 
 









=

1110

0100

pp

pp
P             (11) 

 
The values from Figure 4 can be inserted in equation 11 
and results in: 
 









=

5.05.0

01.099.0
P             (12) 

 
The sum of each row of  the P-matrix has to be always 
one, which is true for the presented example and 
therefore the P-matrix is correct. 

4.2 Example for a MTTF calculation 
The MTTF value for the Markov model illustrated in 
Figure 5 should be calculated. The system has four states 
Z0, Z1, Z2 and Z3. It is assumed that system is operation in 
states Z0, Z1. Since four states exists the P-matrix has a 
dimension of 4x4. 

Z0

Z1

0.002

Z2

Z3

0.015

0.005
0.05

0.02

0.05

0.002

0.05

Z0Z0

Z1Z1

0.002

Z2Z2

Z3Z3

0.015

0.005
0.05

0.02

0.05

0.002

0.05

 
Fig. 5: Example of a Markov model 

Using Equation 7 the P-matrix results in: 
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

















=

95.00.00.005.0

0.095.00.005.0

015.0002.0933.005.0

005.0002.002.0973.0

P           (13) 

 
The next step is to determine the Q-matrix out of the P-
matrix. The condition for the Q-matrix are, that it has to 
be operating states and do not have any absorbing states. 
Since this is true for the states Z0, Z1, the Q-matrix is: 
 









=

933.005.0

02.0973.0
Q             (14) 

 
The next step is to calculate the M-matrix using Equation 
9: 
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The next step is to calculate the N-matrix from equation 
10: 





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


=









−

−
=

−

37454.338047.61

72188.2481829.82

067.005.0

02.0027.0
1

N    (16) 

 
Finally, the MTTF value can be calculated by summing 
up the first row of the N-matrix: 
 

hMTTF 5.10772188.2481829.82 =+=          (17) 
 
The example system has a mean life cycle of 107.5h 
hours. 

5 1oo1-System as Markov Model 
The Markov model of a 1oo1 architecture is presented in 
the figure below. This model possesses no redundant 
components and is already in a critical state, when one 
single component fails due to a dangerous undetected 
failure.  
This Markov model has four states. Every system has a 
initial state Z0. This state is the failure free state (system 
ok) and the system is operating correctly. From this 
initial state (system ok), three other states can be reached. 
 
• State Z1 
 
The state “system s” constitutes a safe state. Safe states 
mean that the failure or fault is safe detected. This 
failures does not harm the system, since it is a safe one, 
one can eliminate (repair) it safely and this state can be 
left with a transition rate µR. 
 
 

• State Z2 
 
This state “system DD” has a dangerous detected failure. 
With the transition rate µ0 and µR the system can reach 
the failure free state. 
 
• State Z3 
 
The failure free state changes into the dangerous 
undetected state “system DU”. This state is critical for 
the system. Since the system failure due to a undetected 
failure, the system can reach only the state failure free 
after the life cycle duration LT, which means the system 
has to be completely exchanged. 

System 
ok
Z0

System
S
Z1

System
DD
Z2

System
DU
Z3

SUSDS λλλ +=

Rµ 0µ

LTµ

DDλ

DUλ

System 
ok
Z0

System 
ok
Z0

System
S
Z1

System
S
Z1

System
DD
Z2

System
DD
Z2

System
DU
Z3

System
DU
Z3

SUSDS λλλ +=

Rµ 0µ

LTµ

DDλ

DUλ

 
Fig. 6: 1oo1 System as Markov model 

5.1 MTTF calculations for a 1oo1 system 
Again, the calculations starts with the determination of 
the P-matrix: 
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     (18) 

 
Since only one failure free state exists, the Q-matrix 
becomes: 
 

( )DSQ λλ −−= 1             (19) 

 
The M-matrix is the unity matrix subtracted from the Q-
matrix: 
 

( )[ ] ( )DSDSQIM λλλλ +=−−−=−= 11              (20) 
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The N-matrix is the inverse of the M-matrix and is stated 
as: 

[ ]
( )DS

MN
λλ +

==
− 11

           (21) 

 
Since equation 21 is a matrix with dimension one, the N-
matrix is equal to the MTTF value. 
 

( )DS

oo NMTTF
λλ +

==
1

11            (22) 

6 1oo2 System as Markov model 
The 1oo2 system has two independent channels. The 
safety function is still functioning if one channels is able 
to operate. If two channels fail then the system is not 
functioning and therefore out of order. The next example 
is going to illustrate this. In state Z0 both systems are in 
operation (System ok). Next, the different states are 
going to be described: 
 
• State Z1 
As in the previous example, this is the state ‘system safe’. 
This state can be reached from the failure free state with a 
transition of 2λS. The value 2 results from the fact that 
the system has two independent channels. λS stands for 
the safe failures of the system. These failures do not 
present any risk for the system. λs can be divided into λSD 
and λSU. The first are safe detected failures and the 
second are safe undetected failures. 
 

SUSDS λλλ +=             (23) 

 
With a transition rate µR of (repair) can the system return 
to the failure free state Z0. 

R

R
τ

µ
1

=              (24) 

 
• State Z2 
 
The system is in a critical situation, when it reaches this 
state. One system is operating the other one is in the state 
of a dangerous detected failure λDD. The state Z0 can be 
reached with the transition rates of µR and µ0 via the state 
Z1.  
 

testτ
µ

1
0 =              (25) 

 
• State Z3 
 
One system is functioning correctly, the second is in state 
of  dangerous undetected failure λDU. This means that the 

system is in dangerous situation, but the system cannot be 
repaired, since it is not known that the system is in this 
particular state. Therefore, one has to wait, until the life 
cycle or life time (LT) is expired and the component is 
getting exchanged or the repaired. The transition rate to 
the initial state is µLT. 
 







=

sLT

LT

11

τ
µ             (25) 

 
Additionally, the possibility exists that a transition is 
carried out to state Z0 via the states Z5 and Z1 with the 
transition rates µ0 and µR, respectively.  
 
• State Z4 , Z5, Z6 
 
The remaining states are where both systems have 
dangerous detected failures (Z4), or one system has a 
dangerous detected failure, while the other has a 
undetected failure (Z5) and last state (Z6) is where both 
systems have dangerous undetected failures.  
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Fig. 7: 1oo2 System as Markov model 

The P-matrix can de determined, whereby the following 
abbreviations are used: 
 

DUDUDDDDDSA βλλλλβλ +⋅+⋅+⋅+⋅= 2221   (26) 

 

DUDDA λλµ ++= 02             (27) 

 

DUDDLTA λλµ ++=3            (28) 

 
The P-matrix with  the abbreviations are stated in 
equation 29: 
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The necessary Q-matrix is taken from the equation 29 
and results in equation 30: 
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          (30) 

 
Equation 30 can be simplified since for this 1oo2 system 
described as a Markov model, τLT → ∞ and therefore : 
µ ≈ 0 and equation 30 becomes: 
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The next step is to calculate the M-matrix: 
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and results in: 
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To determine the MTTF value the N-matrix has to be 
computed: 
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And the final result is: 
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The MTTF value can now be calculated, by taken the 
first row of the N-matrix: 
 

31211

21

221

AAAAA
MTTF DUDD

oo

λλ
++=           (35) 

 
Equation 35 presents the mean life cycle (life time) of a 
1oo2 architecture derived from Markov models. 

7 Conclusion 
The paper presented a systematic approach from the set 
up of Markov models to the final step of calculating the 
MTTF value, which is an important parameter for in the 
research area of safety instrumented systems. Two 
different architecture were examined a 1oo1 and a 1oo2 
architecture. This systematic approach can applied to 
different safety related architectures and systems. 
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