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Abstract: - In this paper we focus on computational aspects of network reliability importance measure
evaluation. It is a well known fact that most network reliability problems are NP-hard and therefore there is a
significant gap between theoretical analysis and the ability to compute different reliability parameters for large
or even moderate networks. In this paper we present two very efficient combinatorial Monte Carlo models for
evaluating network reliability importance measures.
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1 Introduction urn U with a large number of ballsin it. Suppose

Computing network reliability is very important but that each balb is marked with some valugb) and

it is not the only problem in reliability analysis. One we want to calculate the sum afb) overb in U:

of the purposes of network reliability analysis is to Z=Y z(b) 1)
identify the weakness in a system and to quantify the beU )

impact of component failures on the network failure. This  completely matches the computation of
The so called "reliability importance measures" arenetwork reliability. In this case, the balisare the
used for this purpose. The importance measurestates, andz(b)are defined as 0 for arjad state
provide numerical indicator to determine which and equals the probability of the state if itGeod.
components are more important for network Therefore,Z becomes the reliability of the network.
reliability improvement or more critical for system Since the number of balls i is very large, the
failure. Many different importance measures werewhole sum cannot be computed precisely, and we
proposed in literature. But there is a significant gapare forced toestimate Z by some MC scheme. We
between theoretical analysis and the ability tosay that MC scheme is homogeneous, iftitiés are
compute these measures for moderate or largelrawn from theurn with probability whichdoes not
networks. Therefore using Monte Carlo (MC) depend on the probabilities of the states (more on
methods in solving such problems is very popular.homogeneous schemes see in [1]). One important
The essence of most MC applications is the so calledeature of homogeneous schemes is that the relative
Crude Monte Carlo (CMC). The main drawback of error is bounded. (A basic example of a non-
CMC is that it is very inefficient in two extreme homogeneous scheme is the so called Crude Monte
cases: highly reliable and highly unreliable networks Carlo and its variations). As it was mentioned
(the so called rare event phenomenon). Our purpos@bove, the main purpose of this paper is to present
in this paper is to describe how two very efficient efficient Monte Carlo methods applicable to large
MC models can be used for evaluating network networks. This paper is organized as follows. In
reliability importance measures. The common Section 2, we give some basic notions and
feature for these two models is that the appropriatedefinitions. In  Section 3, we present a
simulation schemes arédomogeneous. Let us  computationally efficientmodel [1,2] for evaluating
explain the latter notion in plain words. Consider anreliability gradient vector, which can hesed for
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computing Birnbaum Importance Measure in
general case of networks with non-identical

89

Remark. For equal p = p, first the derivatives

elements. For networks with identical elements we — are computed and only afterwards gl set to
propose in Section 4 a highly efficient spectrum op,

approach [3-5]. It's worth noting that this apptoac

provides easily implemented computations and

allows obtaining with minimal difficulties differs
topological features of the network. Section 5
presents a numerical example.

2 Basic notionsand definitions

All networks havevertices (nodes) andedges. There
are many types of networks varying in their
performance definitions and therefore with différen
concepts of their reliability. LeK-network be an
undirected grapiN = (V, E,K) with a node-seV ,

an edge-setE and a seK —V of special nodes
calledterminals. Also let [V Em and |[EEn. In

our model, nodes can never fail, while edges dan.
an edge fails, we say that it dewn; otherwise we
say it isup. By state of a network we call a binary
vector (x,..,X,), where each component=1if eis

up and x =0otherwise. A state of the network is

defined as beingGood if any two terminals are
connected by a path consisting of edges inube
state. Otherwise it isBad. Theterminal connectivity
criterion has the property of being monotone: eac
subset of @8ad state is 88ad state and each superset
of a Good state is aGood state. There are two
network reliability models:static and dynamic. In
this paper we restrict our attention to static eks.
Each edgee is associated with probabilityof

beingup and a probabilityg = 2 p. of beingdown.

We say that edges are identical if they all hidnee
same probability of beingip, that is for each
i # jwe havep, = p; = p. We define the network

reliability R=R(p,,...,p,)as the probability that the
network is in &ood state.

The following are the mairomponent reliability
importance measures proposed in
Birnbaum Importance Measure (BIM) [6], Fussell-
Vesely Importance Measure (FVIM) [7], Criticality
Importance [8], Reliability Achievement Worth [9],
Reliability Reduction Worth [9]. In our paper we
focus on the two first of them. The BIM of element

g is defined as

e - OR(P,- D)

| 2 (2)

be equalp.
The FVIM of elementg is defined by
R(PL--sP 1 0By By )
=1_ I I+ n (3)
R(P-+Py)

It quantifies the decrement in system reliability
caused by a particular component failure.

FV
I

3 Using Rdiability Gradient for BIM

evaluation

As it was mentioned in Introduction, the relialyilit
gradient vector can be used for BIM evaluation. The
purpose of this section is to describe a speciah fo
of the gradient vector which allows using a highly
efficient Graph Evolution Model [2] for its
computation. Similar form of the gradient was
outlined in [1]. We will get here a special form of
gradient for more general case of monotone
systems. Let us consider a monotone system of
elements. Suppose that each elememay be in

two states up with probability p and down with
probability g . Thestate of a system is defined as a
hbinary vector (x,..,X,), Where each component
x =1if eis up and x =O0otherwise. AlR"binary
states are divided into two classésod andBad.
Definition 1. Reliability gradient vectorVR is

. oR  OR
defined aﬁRz(a,...,a

n

), i.e. componeni of

the reliability gradient vector is BIM of elemeet

Definition 2. System statew=(w,,...,w, )e Bad is
called direct neighbor or simply neighbor of state
V= (Vv,....v, )eUPif w differs fromv in exactly one

position. The set of all neighbor statesDEDWN is
called border set and denoted aBN*. Obviously,

literature: DN* < DOVWN.

It turns out that the reliability gradient vect® i
intimately related to border states. To reveal this
connection, we introduce aartificial evolution
process on system elements. At 0all elements are

down. Element e is "born" after random
timer, ~ exp(, ), where 4 is chosen so that the
following equality takes place:

p=P(r;<1)=1-e . After the "birth", element

It expresses the rate of increase of the networke remainsup forever.Consider two system states

reliability with respect to the element's reliatyili
increase.

v=(\,V,,...M ,,0v%,,,.v and
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w=(V,V,,....V, ;, 1V, ...V, .. Suppose that at time
the system is in state We look for the probability
that during a small time intervalthe system

moves fromv to w. Obviously, it will happen iff the

elementeis born during this interval, and all other

components which are istate 0 will not become

instead of general vector{q4,...,q,4,} we take
specific vector {0,...,g4,...,0}then we get the
following formula:%-qﬁ, =VR{0,...,q4,...,0}=

s PWD)-A @)

{veDN",v{0,....§ ,....0%Good }

alive during the same interval. The first event hasgyample 1. Let us take the network given in Fig. 1
probability 4 -At+o0(At), and the second event has 5ng compute the BIM for edge. The appropriate

probability 1-o(At). Then the probability that
during [t,t+At]there will be the transition

v —> wequals 4 -At+0(At) . Let vbe a border state

of system, i.eve DN". Denote byI'(v) the sum of

Aover the set of all indicesi such that
v+(0,...,1,...0eGood . Call T'(v)the flow from v
into Good.
Formally,I"(v) = > A . We need

{veDN",v+(0,...,0.3 ,0.....03UP }
two other notations. LetR(p(t),...,p, t)) be the

probability that the system is iGood state at the
instant t. Let P(v;t)be the probability that the

system is in state at timet. Now let us consider the

event "the system is ibood stateat time t+At".

This event takes place if at tiniethe system was
already in theGood set or at time it was in one of
its border states and went during this intervairfra
border state tdsood. All other possibilities which
involve more than one transition
[t,t+At] have  probability o(At).  Formally,

R(p,(t+At),....p, +At))=R(p, ¢)....0, )
> P(v;t)-T'(v)- At +0(At) .

veDN

Transfer R(p(t),...,p, t))to the left-hand side,

divide both sides byt and setAt — 0. We arrive at
the following relationship:

dR(p,(t),....p, €)) _

i Y PvOI(v)  (4)
veDN
Now, represent the left-hand side of (4) in an
alternative form:
dR(p,(1).--.p, ) _ 4 AR AP, (0) _
dt jadp, dt
_1me g t)=e)=3IRq .4 =
(p()=1-e 7 .q/t)=€ ") jzﬂdquj 2,
VR{qu“l”qnﬂ‘n} (5)

Comparing (4) and (5) we arrive at the desired

during

border states such thatv+ (1,0, 0, & Good
are:§ =(0,1,0,0), S=(0,11,0), S,=(0,1,0,1. Then
we get by (7):

%qﬂﬂ {(P(S)+P(S)+P(S)) =
A4-(P2 0,504+ P, P 0y d, Py P4A:0).

Dividing the both sides of the latter expression by
gA,, we arrive to the BIM of,.

Fig. 1
S g
®
) &
Y
€ T

The above example demonstrates computations via
formula (6). It is obvious that the main technical
difficulty lies in identifying the border states dan
finding their probabilities. Computations similay t
shown in the above example are difficult to camy o
for large or moderate networks. There is however a
powerful computational Monte Carlo technique
based on introducing a special scheme called
Evolution and Merging process, which allows
efficient estimation of expressions of type (6)wHs

first suggested in the principal paper [2]. We will
leave the relevant details outside this paper and
present them and the corresponding numerical
results in our forthcoming paper.

relationship between the gradient vector and the4 Spectral approach to computing

border state probabilities:

VR{GA - G4 = £ RWOT(Y

veDN

(6)

network reliability importance
measur es

From the latter formula we can get the expressionin this section we will derive the BIM and the FVIM
for BIM of system elements in the following for networks with identical elements by means of so

manner. It follows from the above proof

that if called network combinatorial spectruifhis notion
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was introduced in [3] and [4,5] to estimate networ noo opeg”
lifetime distribution and /or its static reliabyfit For R= Exzi!-(n—i)! ©)
reader’s convenience we remind shortly the prifcipa | oyr example, the network reliability is:
idea of network combinatorial characteristic alle < peg
spectrum. For simplicity we demonstrate the methodR=2 X > = T p*+3p*-q+ p?-q°.
for the case of reliable nodes and unreliable edges ik I)'_ o ,
Remark. Sometimes it is more convenient to use
he cumulative form of the spectrum:

was shown in [4] that this approach is applicable
also to the case of reliable edges and unreliablé :
nodes, or — which is more complicated — to the case SF={y:y=Yx1<i<n (10)
of both unreliable nodes and edges. "

. The valuey expresses the number of permutations
Let T1. be the set of all edge permutationsEinLet & &xp P

) . . msuch that r(z)<i, or, in other words, that
7 be a particular permutation. By sub-permutation N(z(i) is Good
z(i)of 7 we denote a sequence constructed of the (D) '

L , ) . Example 4. For the network on Fig. 1, we have
first i edges inz . For each sub-permutatiafi) we from the above example that there are 14

define a network staf(z(i)), where all the edges ermytations with anchor =3and 4 permutations
inz(i)areup and all other edges im aredown. For  with anchorr =2. So, we gety, =18.

each edgee; and permutationr denote byz(e,) the It is easy to check from (9) that in the casehsf t

index of this edge in. cumulative spectrum the network reliability is give

Example 2. Let us take the network in Fig.1 and let by .

our permutation ber=(1,3,2,4. Then, for R:iyi "|p 9 : (11)

example, 7(3)=(1,3,2) and S(z(3))is a state in 27 iH(n-i)!

which edges 1,3,2 are up, and edge 4 is down. wé&learly, in the case of large or moderate networks

have also: ;[('el) _1 7'[(9?) 3, n(e)=2 we can not get the exact values of the spectrum. We
_4 ' ’ ’ " can however try to estimate them by a Monte Carlo

7(&)=4. ) _ _ simulation [3,4]. It is worth to mention the main

Next we define ananchor. This notion plays a advantages of this combinatorial approach:

central role in our reasoning. o ~ (@) eliminating the rare event phenomenon. This fac

Definition 3. Let r=r(z)be the first index in results in bounding the relative error, so the méth

permutationz so thatN(z(r)) is Good. We say that is especially efficient for highly reliable netwark

r(z)is the anchor of the permutatian (b) once computed, theombinatorial spectrum

Definition 4. Denote by x the number ofall serves for as many values of nodes or edge failure

. o probabilities as needed.
permutations such thati is theanchor ofz. We (¢ hossibility to use for solving different relitity
say that the set problems in dynamic networks.

_ _ _ Definition 5. Denote by, the number of all
is thecombinatorial spectrum of the network. : W

Example 3. We demonstrate these definitions on apermutgﬂons;z such that S(”(')), IS Goqd and
network given in Fig. 1. The total number of #(&)<i. We call the sef{z 1<i<nl<j<n}-
permutations of 4 edges in the network is 24. Letthe BIM spectrum.

7=(3,1,2,4. We see that the first index such that Definition 6. Denote by v, ;the number of all
the network state becoméSood is 3. Therefore permutationg such thatS(z(i))is Good and
r(z)=r(312,4) : is the anchor of this ,(e)>i.we call the setfv ,1<i<nl<j<n} -
permutation. After_ going over al! permutations we (na pyviM spectrum. '

arrive at the following combinatorial spectrum bét We see from these definitions that +v, , = y;.

given network:

x|0 4 14 6 Y1 44 %, 4 %4

It was shown in [4] that given a network spectrum 0] O 0 0 0
SP={{%,1 <i<h , the network reliability may be 4| 4 4 0 0

expressed in the following form: 18 | 12 18 12 12
24 | 24 | 24| 24| 24

SP={{%1 <i<h (8)

IR
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Example5. Let us take the edge from the network holdsz, > z, then 2R 5 R
in Fig. 1 and let us compute, ,. It is easy to see op; o,

(b) Suppose that the condition of (a) does ke ta
place. Than let thek be the maximal index such
Good and 7(g) > 3. So we gety;—2z;,=6. From  thatz =z . Suppose tha > z..Then there exists

the previous exampley, =18. Hence, we get that some valug, such that for allp > p,the inequality

that there are 6 permutationssuch thatS(z(3))is

z,,=12. The BIM spectrum for the network is OR_ IR,

given in Table 1. op; P,
Claim 1. Proof. (a) From (12) we have:
(a) The BIM for edgg is given by the following R R _ 0z, pt-gt = (y, -z,) p' .q"*ifl_
formula: T ap, op, B | i!-(n—i)!. |
jp=pfu PG ZWmA) PG ) a(z,-2) PO - (2.-2) P a
= it(n=i)! .Zl i(n=i)! =
(b) The FVIM for edgg is given by the following 1 i
formula: i(z'j_%)'p 9 and (a) follows.
.n .-t i=1 i!‘(n—i)!
FV 1 nVi;-p-q
I =1- T EY (13) (b) From the definition ok and the latter expression
R(p)iz ik(n-i)! i
we obtain:

Proof. (a) Remind that BIM for edges equals : .
( ) g j q K (Zyj_z’s).pl—l‘qn—l—lz

R RPd ooy RO, o0 1y - 2 (o)

P « (2, -25) Ay
The value z,, by definition, is the number of pk’l'qn’k’l'(_ﬂﬁ'%)kf'

permutgtlonsﬁsugh that S(7Z'(I)).IS Good and .t.he assertion follows.

edgee, is up. For fixed permutatiorn the probability e use the following Monte Carlo scheme to obtain
of an appropriate state witle being up, equals  unbiased estimates for the, z ;jandv, ;.

pt-q"' . Take into account that a specific state with Simulation scheme.

i edges beingp andn-i edges beingown we obtain ~ Stepl. Initialize alé . ; andc; to be 0.
i(n—i)! times (from different permutations). Then Step2. Simulate the permutatior IT .

the summary probability of alGood states withi ~ Step3. Findr =r(rz)- the minimal index of edge
edges beingup and n-i edges beinglown equals inz so that the stat&l(z(r)) is Good.

) and for p—1, the

.p1l.a"i .
2P 9 Eor the case of the edge being Stepa. Letg =a +1.
it(n—i)! Step5. For allj such thatz(e ) <r let b =b, , +1.
down we get the expression of the appropriate Step6. For allssuch thatz(e)) >rlet ¢, . :=c, . +1.
—7 ). i il s s
probability ag(y‘ _Z,J) p. 9 , and (a) follows. Step7. Letr :=r+1. If r <n Go to Step4.
ik(n—i)! Step8. Repeat steps rtimes.
(b) Using (a), the definition ofIS™ and the above c ting ¢ = 8 n ., Bynt o cenl
mentioned fact tha, +v,; =y, we arrive at the ompuling ¥ =-y 4 ==y Vi =Ty W

desired expression. can from (11), (12), (13) obtain the unbiased
In order to rank the elements according to theirestimates foR, 1° and | accordingly.
importance measure there is no need to compute the
partial derivatives. The following simple claim &k
place. 5 Numerical Example
Claim 2. Let {z,1<i<r}and {z,1<i<n} be the |n this section we present an example, which
BIM spectrum elements for the edgesand e exp_Iains how we can rank edges in accordance to
respectively. Then: their BIM by using spectrum approach_. W4e choose
(@) If for all 1<i<n the inequalityz, >z, holds, two-terminal hypercubéd, - a ngtwork with2* =16
R R _ _ nodes and 32_ edges (n_umerlcal result§ for larger
then — > . Moreover, if for at least one index networks we will present in our forthcoming paper).
op; P This hypercube is shown on Fig. 2. Its terminaks ar
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nodes 1 and 16. Edges will be denoted ky) (,
wherek ands are node numbers.

Let us note that hypercube configurations are widel
used in computer networks [10].

Fig. 2

93

1 and 16, and the third — all other edges. This
conclusion may seem to be intuitively obvious, but
for the same hypercube witk > 2 nonsymmetrical

terminals or for other, nonsymmetrical networks
similar conclusions are not so clear. Here the
ranking is obvious in spite of random fluctuatiaris

the b , ) values. In more involved cases there will

tools for better
edge

be a need to use statistical
discrimination between equally important
groups.

4 Conclusions

(1) To the best of our knowledge, very few works
were conducted on computational problems of
reliability importance values evaluation for large
moderate networks.

(2) The proposed method for the general case of
different edges is efficient, since it is based on

Table 2 presents a fragment of simulation resultsmonte Carlo model with well-established efficiency.

based on 10000 replications. By we marked the
simulated value of spectrum and b .. -

simulated value of BIM spectruns® for edge k,s).
Remind that for edge ranking there is no need t

compute their BIM's. We see from Table 2 that the

values of IS®for edges (1,9) and (8,16) are very
close to each other. On the other side, theseesal

(o)

Note that one of the advantages of this method is
that in one simulation session we can evaluate
importance measures for different edges and for
different given edge probabilities.

(3) The spectrum approach is highly efficient and
has many advantages. One of them is that
constructed spectrum does not depend on the edge
probabilities and reflects the topological featuoés

are consistently greater than the BIM spectrumy anwork.

values for edge (1,2) and the latter — than thadse

(3,4). So, we rank the edges by their importance ir},

the following order (read table 2 in horizontal
direction) (1,9)= (8,16> (1,2 (3,4.

Table 2
i a1 b|,(1,9) b|,(8,16) b|,(1,2) b|,(3,4)
6 2 2 1 0 1
7 15 14 14 2 3
8 59 51 50 12 12
9 | 154 | 129 | 128 40 38
10| 350 | 286 | 267 | 109 91
11| 679 | 501 | 492 | 235 | 206
12| 1333| 886 | 904 | 525 | 438
13| 2385| 1478 | 1492 | 996 | 892
14| 3723 | 2187 | 2210 | 1625| 1547
15| 5230| 3012 | 3042 | 2502 | 2363

Note that from the whole data file one can infeatth
in the given network there are three, by their BIM'

different groups of edges. The first is the pair of
edges (1,9) ad (8,16). The second is the grou

consisting of all other edges incident to the teats

(4) In many practical situations, the ranking ofesl

y their importance measures may be done without
computing appropriate probabilities, but only using
the BIM spectrum.

(5) The two proposed methods may be easily
implemented for networks with reliable edges and
unreliable nodes, and also (this is technically enor
difficult) for networks with both unreliable nodes
and edges.

(6) Our methods can be considered as the firgd ste
towards optimal network design.
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