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Abstract: - In this paper we focus on computational aspects of network reliability importance measure 
evaluation. It is a well known fact that most network reliability problems are NP-hard and therefore there is a 
significant gap between theoretical analysis and the ability to compute different reliability parameters for large 
or even moderate networks. In this paper we present two very efficient combinatorial Monte Carlo models for 
evaluating network reliability importance measures. 
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1   Introduction 
Computing network reliability is very important but 
it is not the only problem in reliability analysis. One 
of the purposes of network reliability analysis is to 
identify the weakness in a system and to quantify the 
impact of component failures on the network failure. 
The so called "reliability importance measures" are 
used for this purpose. The importance measures 
provide  numerical indicator to determine which 
components are more important for network 
reliability improvement or more critical for system 
failure. Many different importance measures were 
proposed in literature. But there is a significant gap 
between theoretical analysis and the ability to 
compute these measures for moderate or large 
networks. Therefore using Monte Carlo (MC) 
methods in solving such problems is very popular. 
The essence of most MC applications is the so called 
Crude Monte Carlo (CMC). The main drawback of 
CMC is that it is very inefficient in two extreme 
cases: highly reliable and highly unreliable networks 
(the so called rare event phenomenon). Our purpose 
in this paper is to describe how two very efficient 
MC models can be used for evaluating network 
reliability importance measures. The common 
feature for these two models is that the appropriate 
simulation schemes are homogeneous. Let us 
explain the latter notion in plain words. Consider an 

urn U with a large number of balls b in it. Suppose 
that each ball b is marked with some value( )z b and 
we want to calculate the sum of ( )z b over b in U:  

                                 ( )
b U

Z z b
∈

= ∑                            (1) 

This completely matches the computation of 
network reliability. In this case, the balls b are the 
states, and ( )z b are defined as 0 for any Bad state 
and equals the probability of the state if it is Good. 
Therefore, Z becomes the reliability of the network. 
Since the number of balls in U is very large, the 
whole sum cannot be computed precisely, and we 
are forced to estimate Z by some MC scheme. We 
say that MC scheme is homogeneous, if the balls are 
drawn from the urn with probability which does not 
depend on the probabilities of the states (more on 
homogeneous schemes see in [1]). One important 
feature of  homogeneous schemes is that the relative 
error is bounded. (A basic example of a non-
homogeneous scheme is the so called Crude Monte 
Carlo and its variations). As it was mentioned 
above, the main purpose of this paper is to present 
efficient Monte Carlo methods applicable to large 
networks. This paper is organized as follows. In 
Section 2, we give some basic notions and 
definitions. In Section 3, we present a 
computationally efficient model [1,2] for evaluating 
reliability gradient vector, which can be used for 
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computing Birnbaum Importance Measure in 
general case of networks with non-identical 
elements. For networks with identical elements we 
propose in Section 4 a highly efficient spectrum 
approach [3-5]. It's worth noting that this approach 
provides easily implemented computations and 
allows obtaining with minimal difficulties  different 
topological features of the network. Section 5 
presents a numerical example.  
 
 

2   Basic notions and definitions 
All networks have vertices (nodes) and edges. There 
are many types of networks varying in their 
performance definitions and therefore with different 
concepts of their reliability. Let K-network be an 
undirected graph ( , , )N V E K=  with a node-set V , 
an edge-set E  and a setK V⊆ of special nodes 
called terminals. Also let | |V m=  and | |E n= .  In 
our model, nodes can never fail, while  edges can.  If 
an edge fails, we say that it is down; otherwise we 
say it is up. By state of a network we call a binary 
vector 1( ,.., )nx x , where each component 1ix = if ie is 
up and  0ix = otherwise.  A state of the network is 
defined as being Good if any two terminals are 
connected by a path consisting of edges in the up 
state.  Otherwise it is Bad. The terminal connectivity 
criterion has the property of being monotone: each 
subset of a Bad state is a Bad state and each superset 
of a Good state is a Good state. There are two 
network reliability models: static and dynamic. In 
this paper we restrict our attention to static networks.   
Each edge ie  is associated with probabilityip of 
being up and a probability 1i iq p= −  of being down. 
We say that   edges are identical if they all have the 
same probability of being up, that is for each 
i j≠ we have i jp p p= = . We define the network 

reliability 1( ,..., )nR R p p= as the probability that the 
network is in a Good state.  
The following are the main component  reliability 
importance measures proposed in literature:   
Birnbaum Importance Measure (BIM) [6], Fussell-
Vesely Importance Measure (FVIM) [7], Criticality 
Importance [8], Reliability Achievement Worth [9], 
Reliability Reduction Worth [9]. In our paper we 
focus on the two first of them. The BIM of element 

ie  is defined as  

                           1( ,..., )B n
i

i

R p p
I

p
∂

=
∂

                       (2) 

It expresses the rate of increase of the network 
reliability with respect to the element's reliability 
increase.   

Remark. For equal ip p≡ , first the derivatives 

i

R

p

∂

∂
 are computed and only afterwards all ip  set to 

be equal p . 

 The FVIM of  element  ie   is defined by           

              1 1 1

1

( ,..., ,0, ,..., )
1

( ,..., )
FV i i n
i

n

R p p p p
I

R p p
− += −           (3) 

It quantifies the  decrement in system reliability 
caused by a particular component failure.   

 
 
3   Using Reliability Gradient for BIM 
evaluation  
As it was mentioned in Introduction, the reliability 
gradient vector can be used for BIM evaluation. The 
purpose of this section is to describe a special form 
of the gradient vector which allows using a highly 
efficient Graph Evolution Model [2] for its 
computation. Similar form of the gradient was 
outlined in [1]. We will get here a special form of 
gradient for  more general case of monotone 
systems. Let us consider a monotone system of n 
elements. Suppose that each element ie may be in 
two states : up with probability ip and down with 
probability iq . The state of a system is defined as a 
binary vector 1( ,.., )nx x , where each component 

1ix = if ie is up and  0ix = otherwise. All2n binary 
states are divided into two classes: Good and Bad. 
Definition 1. Reliability gradient vector R∇  is 

defined as
1

( ,..., )
n

R R
R

p p
∂ ∂

∇ =
∂ ∂

, i.e. component i of 

the reliability gradient vector is BIM of  element ie .   
Definition 2.  System state 1( ,..., )nw w w Bad= ∈ is 
called direct neighbor or simply neighbor of state 

1( ,..., )nv v v UP= ∈ if w differs from v in exactly one 
position. The set of all neighbor states of DOWN is 
called border set and denoted as DN*. Obviously, 

* .DN DOWN⊆  
It turns out that the reliability gradient vector is 
intimately related to border states. To reveal this 
connection, we introduce an artificial  evolution 
process on system elements. At 0t = all elements are 
down. Element ie  is "born" after random 
time ~ exp( )i iτ λ , where iλ  is chosen so that the 
following equality takes place: 

( 1) 1 i
i ip P e λ

τ
−

= ≤ = − .  After the "birth", element 

ie  remains up forever. Consider two system states 

1 2 1 1( , ,..., ,0, ,... )i i nv v v v v v
− +

= and 
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1 2 1 1( , ,..., ,1, ..., )i i nw v v v v v
− +

= . Suppose that at time t 
the system is in state v. We look for the probability 
that during a small time intervalt∆ the system 
moves from v to w. Obviously, it will happen iff the 
element ie is born during this interval, and all other 
components which are in state 0 will not become 
alive during the same interval. The first event has 
probability ( )i t o tλ ⋅∆ + ∆ , and the second event has 

probability 1 ( )o t− ∆ . Then the probability that 
during [ , ]t t t+∆ there will be the transition 
v w→ equals ( )i t o tλ ⋅∆ + ∆ . Let v be a border state 

of system, i.e. *v DN∈ . Denote by ( )vΓ the sum of 

iλ over the set of all indices i such that 

(0,...,1 ,...0)iv Good+ ∈ . Call ( )vΓ the flow from v 
into Good. 
Formally,

*{ , (0,...,0,1 ,0,...,0) }

( ) i
v DN v UPi

v λ
∈ + ∈

Γ = ∑ . We need 

two other notations. Let 1( ( ),..., ( ))nR p t p t  be the 
probability that the system is in Good state at the 
instant t. Let ( ; )P v t be the probability that the 
system is in state v at time t. Now let us consider the 
event "the system is in Good state at time t t+∆ ". 
This event takes place if at time t the system was 
already in the Good set or at time t it was in one of 
its border states and went during this interval from a 
border state to Good. All other possibilities which 
involve more than one transition during 
[ , ]t t t+∆ have probability ( )o t∆ . Formally, 

1 1( ( ),..., ( )) ( ( ),..., ( ))n nR p t t p t t R p t p t+∆ +∆ = +

*
( ; ) ( ) ( )

v DN

P v t v t o t
∈

⋅Γ ⋅∆ + ∆∑ .  

Transfer 1( ( ),..., ( ))nR p t p t to the left-hand side, 
divide both sides by t∆ and set 0t∆ → . We arrive at 
the following relationship:     

                 1

*

( ( ),..., ( ))
( ; ) ( )n

v DN

dR p t p t
P v t v

dt ∈

= Γ∑     (4) 

Now, represent the left-hand side of (4) in an 
alternative form: 

1

1

( )( ( ),..., ( )) n
jn

j j

dp tdR p t p t dR
dt dp dt=

= ⋅ =∑

1
( ( ) 1 , ( ) )

nt tj j
j j j j

j j

dR
p t e q t e q

dp
λ λ

λ
− −

=

= − = = ⋅ =∑      

                                1 1{ ,..., }n nR q qλ λ∇ ⋅                   (5) 
Comparing (4) and (5) we arrive at the desired 
relationship between the gradient vector and the 
border state probabilities: 
             1 1

*
{ ,..., } ( ; ) ( )n n

v DN

R q q P v t vλ λ
∈

∇ ⋅ = Γ∑          (6) 

From the latter formula we can get the expression 
for BIM of system elements in the following 
manner. It follows from the above proof  that if 

instead of general vector  1 1{ ,..., }n nq qλ λ  we take 
specific vector {0,..., ,...,0}i iq λ then we get the 

following formula: {0,..., ,...,0}i i i i
i

R
q R q

p
λ λ

∂
⋅ = ∇ ⋅ =

∂
 

               
*{ , (0,...,1 ,...,0) }

( ;1) i
v DN v Goodi

P v λ
∈ + ∈

⋅∑                    (7) 

Example  1.  Let us take the network given in Fig. 1 
and compute the BIM for edge 1e . The appropriate 
border states v such that (1,0,0,0)v Good+ ∈  
are: 1 (0,1,0,0)S = , 2 (0,1,1,0)S = , 3 (0,1,0,1)S = .   Then 
we get by (7): 

1 1
1

R
q

p
λ

∂
⋅

∂
= 1 1 2 3( ( ) ( ) ( ))P S P S P Sλ ⋅ + + =

1 2 1 3 4 2 3 1 4 2 4 1 3( )p q q q p p q q p p q qλ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ . 
Dividing the both sides of the latter expression by 

1 1q λ , we arrive to the BIM of 1e . 
 

Fig. 1 
 

 
 
 
 
 
 
 
 
 
 
 
The above example demonstrates computations via 
formula (6). It is obvious that the main technical 
difficulty lies in identifying the border states and 
finding their probabilities. Computations similar to 
shown in the above example are difficult to carry out 
for large or moderate networks. There is however a 
powerful computational Monte Carlo technique 
based on introducing a special scheme called 
Evolution and Merging process, which allows 
efficient estimation of expressions of type (6). It was 
first suggested in the principal paper [2]. We will 
leave the relevant details outside this paper and 
present them and the corresponding numerical 
results in our forthcoming paper. 
 
 

4  Spectral approach to computing 
network reliability importance  
measures    
In this section we will derive the BIM and the FVIM  
for networks with identical elements by means of so 
called network combinatorial spectrum. This notion 

S 

T 

1e  

2e
 

3e  

4e  
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was introduced in  [3] and [4,5] to estimate network 
lifetime distribution and /or its static reliability. For 
reader’s convenience we remind shortly the principal 
idea of network  combinatorial characteristic called 
spectrum. For simplicity we demonstrate the method 
for the case of reliable nodes and unreliable edges. It 
was shown in [4] that this approach is applicable 
also to the case of reliable edges and unreliable 
nodes, or – which is more complicated – to the case 
of both unreliable nodes and edges. 
Let EΠ be the set of all edge permutations in E. Let  
π  be a particular  permutation. By sub-permutation 

( )iπ of π we denote a sequence constructed of the 
first i edges in π . For each sub-permutation( )iπ  we 
define a network state( ( ))S iπ , where all the edges 
in ( )iπ are up and all other edges in π  are down. For 

each edge je and permutation π denote by ( )jeπ the 

index of this edge in π .  
Example 2.  Let us take the network in Fig.1 and let 
our permutation  be (1,3,2,4)π = . Then, for 
example, (3) (1,3,2)π =  and ( (3))S π is a state in 
which edges 1,3,2  are up, and edge 4 is down. We 
have also: 1( ) 1eπ = , 2( ) 3eπ = , 3( ) 2eπ = , 

4( ) 4eπ = .  
Next we define an anchor. This notion plays a 
central role in our reasoning. 
Definition 3. Let ( )r r π= be the first index in 

permutation π so that ( ( ))N rπ  is Good. We say that 

( )r π is the anchor of the permutation π .  
Definition 4. Denote by ix  the number of all 
permutationsπ such that i  is the anchor ofπ . We 
say that the set 

                SP={{ },1 }ix i n≤ ≤                  (8) 
is the combinatorial spectrum of the network. 
Example  3. We demonstrate these definitions on a 
network given in Fig. 1. The total number of 
permutations of 4 edges in the network is 24. Let 

(3,1,2,4)π = . We see that the first index such that 
the network state becomes Good is 3. Therefore 

( ) (3,1,2,4) 3r rπ = =  is the anchor of this 
permutation. After going over all permutations we 
arrive at the following combinatorial spectrum of the 
given network: 

i | 1     2     3     4 
                           ix | 0     4   14     6 
It was shown in [4] that given a network spectrum 

{{ },1 }iSP x i n= ≤ ≤ , the network reliability may be 
expressed in the following form:  

                           
1 ! ( )!

i n in n

r
r i r

p q
R x

i n i

−

= =

⋅
= ∑ ∑

⋅ −
                    (9) 

In our example, the network reliability is: 
4 4

1 ! (4 )!

i n i

r
r i r

p q
R x

i i

−

= =

⋅
= =∑ ∑

⋅ −

4 3 2 23p p q p q+ ⋅ + ⋅ . 

Remark.   Sometimes it is more convenient to use 
the cumulative form of the spectrum:  

                    *

1
{ : ,1 }

i

i i i
k

SP y y x i n
=

= = ≤ ≤∑            (10) 

The value iy expresses  the number of permutations 
π such that ( )r iπ ≤ , or, in other words, that 

( ( ))N iπ is Good.  
Example  4. For the network on Fig. 1, we have 
from the above example that there are 14 
permutations with anchor 3r = and 4 permutations 
with anchor 2r = . So, we get  3 18y = .  
It is easy to check from  (9) that in the case of the 
cumulative spectrum the network reliability is given 
by  

                             
1 ! ( )!

i n in

i
i

p q
R y

i n i

−

=

⋅
= ⋅∑

⋅ −
                  (11) 

Clearly, in the case of large or moderate networks 
we can not get the exact values of the spectrum. We 
can however try to estimate them by a Monte Carlo 
simulation [3,4]. It is worth to mention the main 
advantages of this combinatorial approach: 
(a) eliminating the rare event phenomenon. This fact 
results in bounding the relative error, so the method 
is especially efficient for highly reliable networks.  
(b) once computed, the combinatorial spectrum 
serves for as many values of nodes or edge failure 
probabilities as needed.  
(c) possibility to use for solving different reliability 
problems in dynamic networks. 
Definition 5. Denote by ,i jz  the number of all 

permutations π  such that ( ( ))S iπ  is Good and 
( )je iπ ≤ . We call the set ,{ ,1 ,1 }i jz i n j n≤ ≤ ≤ ≤ - 

the BIM spectrum. 
Definition 6. Denote by ,i jv the number of all 

permutationsπ  such that ( ( ))S iπ is Good and 
( )je iπ > .We call the set ,{ ,1 ,1 }i jv i n j n≤ ≤ ≤ ≤  - 

the FVIM  spectrum. 
We see from these definitions that , ,i j i j iz v y+ = . 

Table 1 
i 1y  ,1iz  ,2iz  ,3iz  ,4iz  

1 0 0 0 0 0 
2 4 4 4 0 0 
3 18 12 18 12 12 
4 24 24 24 24 24 
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Example 5. Let us take the edge 1e from the network 

in Fig. 1 and let us compute 3,1z . It is easy to see 

that there are 6 permutations π such that ( (3))S π is 

Good and 1( ) 3eπ > . So we get 3 3,1 6y z− = .  From 

the previous example, 3 18y = . Hence, we get that 

3,1 12z = . The BIM spectrum for the network is 

given in Table 1. 
Claim 1.   
(a) The BIM for edge j is given by the following 
formula: 

       
1 1

, ,

1

( )

! ( )!

i n i i n i
n

i j i i jB
j

i

z p q y z p q
I

i n i

− − − −

=

⋅ ⋅ − − ⋅ ⋅
= ∑

⋅ −
    (12) 

(b) The FVIM for edge j is given by the following 
formula: 

                    
1

,

1

1
1

( ) ! ( )!

i n i
n

i jFV
j

i

v p q
I

R p i n i

− −

=

⋅ ⋅
= − ∑

⋅ −
         (13) 

Proof.  (a) Remind that BIM for edge je equals 

1 1( ,...1 ,..., ) ( ,...,0 ,..., )j n j n
j

R
R p p R p p

p
∂

= −
∂

. 

The value ,i jz , by definition, is the number of 

permutations π such that ( ( ))S iπ is Good and the 
edge je is up. For fixed permutationπ the probability 

of an appropriate state with je being up, equals 
1i n ip q− −
⋅ . Take into account that a specific state with 

i edges being up and n-i edges being down we obtain 
! ( )!i n i⋅ −  times (from different permutations). Then 

the summary probability of all Good states with i 
edges being up and n-i edges being down equals 

1
,

! ( )!

i n i
i jz p q

i n i

− −
⋅ ⋅

⋅ −
.  For the case of the edge je being 

down we get the expression of the appropriate 

probability as 
1

,( )

! ( )!

i n i
i i jy z p q

i n i

− −
− ⋅ ⋅

⋅ −
, and (a) follows. 

(b) Using (a), the definition of  FVIS  and the above 
mentioned fact that, , ,i j i j i jz v y+ =  we arrive at the 

desired expression.   
In order to rank the elements according to their 
importance measure there is no need to compute the 
partial derivatives. The following simple claim takes 
place.  
Claim 2. Let { ,1 }ijz i n≤ ≤ and { ,1 }isz i n≤ ≤ be the 

BIM spectrum elements for the edges je and se  

respectively. Then: 
(a)   If for all 1 i n≤ ≤  the inequality ij isz z≥ holds, 

then 
j s

R R
p p
∂ ∂

≥
∂ ∂

 . Moreover, if for at least one index 

it holds ij isz z> , then 
j s

R R
p p
∂ ∂

>
∂ ∂

. 

(b)   Suppose that the condition of (a) does not take 
place. Than let the k be the maximal index such 
that ij isz z≠ . Suppose thatkj ksz z> .Then there exists 

some value 0p such that for all 0p p≥ the inequality 

j s

R R
p p
∂ ∂

>
∂ ∂

 holds. 

Proof. (a) From (12) we have: 

j s

R R
p p
∂ ∂

− =
∂ ∂

 
1 1

, ,

1

( )

! ( )!

i n i i n i
n

i j i i j

i

z p q y z p q

i n i

− − − −

=

⋅ ⋅ − − ⋅ ⋅
−∑

⋅ −
 

1 1
, , , ,

1

( ) ( )

! ( )!

i n i i n i
n i j i s i s i j

i

z z p q z z p q

i n i

− − − −

=

− ⋅ ⋅ − − ⋅ ⋅
=∑

⋅ −
 

1 1
, ,

1

( )

! ( )!

i n i
n

i j i s

i

z z p q

i n i

− − −

=

− ⋅ ⋅
∑

⋅ −
 and (a) follows. 

(b) From the definition of k and the latter expression 
we obtain: 

1 1
, ,

1

( )

! ( )!

i n i
k

i j i s

i

z z p q

i n i

− − −

=

− ⋅ ⋅
=∑

⋅ −

, ,1 1

1

( )
( ( ) )

! ( )!

k
i j i sk n k k i

i

z z q
p q

i n i p
− − − −

=

−
⋅ ⋅ ⋅∑

⋅ −
 and for 1p → , the 

assertion follows. 
We use the following Monte Carlo scheme to obtain 
unbiased estimates for the iy , ,i jz and ,i jv .   

Simulation scheme. 
Step1. Initialize all ia , ,i jb  and ,i jc to be 0.  

Step2. Simulate the permutationπ ∈Π . 
Step3. Find ( )r r π= - the minimal index of edge 
inπ  so that the state ( ( ))N rπ is Good.  

Step4. Let : 1r ra a= + . 
Step5. For all j such that ( )je rπ ≤ let , ,: 1r j r jb b= + . 

Step6. For all  s such that ( )se rπ > let , ,: 1r s r sc c= + . 

Step7. Let : 1r r= + . If r n≤  Go to Step4. 
Step8. Repeat steps 2-7 M times.     

 Computing , ,
, ,

! !!
ˆ ˆˆ, ,i j i ji

i i j i j

b n c na n
y z v

M M M

⋅ ⋅⋅
= = =  we 

can  from (11), (12), (13) obtain the unbiased 
estimates for R , BI  and  FVI accordingly. 

 
 

5 Numerical Example 
In this section we present an example, which 
explains how we can rank edges in accordance to 
their BIM by using  spectrum approach. We choose 
two-terminal  hypercube 4H - a network with 42 =16 
nodes and 32 edges (numerical results for larger 
networks we will present in our forthcoming paper). 
This hypercube is shown on Fig. 2. Its terminals are 
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nodes 1 and 16. Edges will be denoted by (k,s) , 
where k and s are node numbers.  
Let us note that hypercube configurations are widely 
used in computer networks [10].  

 
Fig. 2 

 

 
 
Table 2 presents a fragment of simulation results, 
based on 10000 replications. By ia  we marked the 

simulated value of spectrum and by ,( , )i k sb  - 

simulated value of BIM spectrum BIS for edge (k,s). 
Remind that for edge ranking there is no need to 
compute their BIM's. We see from Table 2 that the 
values of BIS for  edges (1,9) and (8,16) are very 
close  to each  other. On the other side, these values 
are consistently greater than the BIM spectrum 
values for  edge (1,2) and the latter – than those of 
(3,4). So, we rank the edges by their importance in 
the following order (read table 2 in horizontal 
direction) (1,9) (8,16) (1,2) (3,4)= > > .  
 

Table 2 
 

i ia  ,(1,9)ib  ,(8,16)ib  ,(1,2)ib  ,(3,4)ib  

6 2 2 1 0 1 
7 15 14 14 2 3 
8 59 51 50 12 12 
9 154 129 128 40 38 
10 350 286 267 109 91 
11 679 501 492 235 206 
12 1333 886 904 525 438 
13 2385 1478 1492 996 892 
14 3723 2187 2210 1625 1547 
15 5230 3012 3042 2502 2363 

 
Note that from the whole data file one can infer that 
in the given network there are three, by their BIM's, 
different groups of edges. The first is the pair of 
edges (1,9) ad (8,16). The second is the group 
consisting of all other edges incident to the terminals 

1 and 16, and the third – all other edges. This 
conclusion may  seem to be intuitively obvious, but 
for the same hypercube with 2k > nonsymmetrical 
terminals or for other, nonsymmetrical networks 
similar conclusions are not so clear. Here the 
ranking is obvious in spite of random fluctuations of 
the ,( , )i k sb  values. In more involved cases there will 

be a need to use statistical tools for better 
discrimination between equally important  edge 
groups. 
 

 
4 Conclusions 
(1) To the best of our knowledge, very few works 
were conducted on computational problems of 
reliability importance values evaluation for large or 
moderate networks.  
(2) The proposed method for the general case of 
different edges is efficient, since it is based on   
Monte Carlo model with well-established efficiency. 
Note that one of the advantages of this method is 
that in one simulation session we can evaluate 
importance measures for different edges and for 
different given edge probabilities. 
(3) The spectrum approach is highly efficient and 
has many advantages. One of them is that 
constructed spectrum does not depend on the edge 
probabilities and reflects the topological features of 
a network. 
(4) In many practical situations, the ranking of edges 
by their importance measures may be done without 
computing appropriate probabilities, but only using  
the BIM spectrum. 
(5) The two proposed methods may be easily 
implemented for networks with reliable edges and 
unreliable nodes, and also (this is technically more 
difficult) for networks with both unreliable nodes 
and edges. 
(6) Our methods can be considered as the first  step 
towards optimal network design.  
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