
Data-flow Based Vulnerability Analysis and Java Bytecode

HUA CHEN, TAO ZOU, and DONGXIA WANG

Beijing Institute of System Engineering, P.O.Box 9702-19, Beijing, PRC China 100101

chen_hua2003@ sina.com, zoutao814@163.com

Abstract: - The security of information systems has been the focus because of network applications.

Vulnerability analysis is widely used to evaluate the security of a system to assure system security. With the help

of vulnerability analysis, the security risk of a system can be predicted so that the countermeasures are arranged

in advance. These will promote system security effectively. The object of vulnerability analysis is to find out the

unknown security holes in a system. It could be helpful to understand the characteristics of security holes and to

assess the security risk of a system. Data-flow based analysis shows its predominance in vulnerability analysis

because the vulnerability is data-flow dependent. The paper discusses how to use data-flow analysis in

vulnerability analysis. The way to apply data-flow analysis in Java bytecode vulnerability analyzing is

presented.

Key-Words: - program analysis, vulnerability, Java bytecode, data-flow analysis

1 Introduction
The network applications make the information

system security focus research area of all the world.

The software security, which is the key of

information system security, is widely studied

because of its importance. The software development

faces a number of challenges such as expanding size,

compressed time and growing complexity. As a

result, there are errors and weakness left in software

system inevitably. These errors and weakness are the

main sources raising security faults.

 There are a lot of security assurance techniques

that could be used to improve the security

capability of a system to assure its security.

Vulnerability analysis is one of the most important

of them. By vulnerability analysis, the security

state of the system could be analyzed. This will

help to arrange the necessary countermeasures in

advance to avoid possible risk.

Vulnerability analysis aims to find out the

unknown security weakness in a system. It

analyzes the security threats of a system, finds out

the defects of the system and investigates the ways

to exploit the defects to damage the system. It is the

basis of many other assurance techniques.

The current vulnerability analysis techniques

make use of the known security faults. By reverse

engineering and faults injection, the new attack

methods are created and tested. The methods are

case to case in mass. Most of the resulted methods

are suitable with some specific vulnerability

pattern. The buffer overflow is a classic example

with tools, such as Metasploit [1], to support

exploiting. The main problems of vulnerability

analysis techniques are unstructured, manual skill

and inefficient. The result of analysis depends on

analyzer’s experience greatly. It is demanded to

study new techniques for vulnerability analysis

which could promote analysis capability and

quality to help manage a more secure system.

Java is a secure language for the security had

been taken into account in its original design. Java

sets up special security mechanism to keep

program from network exploiting but there are still

some problems in Java security. Because of its

security management hierarchy and granularity,

some application security problems are not fully

controlled by Java security mechanism. The typical

problem is command injection [1]. The input out of

a program can be passed directly to some risk inner

operation as parameters. So the operation could be

manipulated by some skillful input. As a result, the

behavior of program is managed and the system

security is destroyed.

Vulnerability is the program’s defects or errors

which may be used to spoil the confidentiality,

integrality and availability of the program as well

as the whole system. This means the vulnerability

needs to be used by outer program. If there is a path

to pass external data to some risk point, there is

vulnerability in the program. To analyze the

vulnerability of a program is to evaluate the

possibility and possible effect that the external data

could influence the inner program.

Data-flow analysis is a method to provide the

global information about how a program processes

its data. It could expose the influence and

propagation of some data in a program. With the

help of data-flow analysis, the way how external

data propagates in a program will be clear. This can

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 201

be used to estimate the possibility the program may

be exploited. The information is helpful to system

security assurance.

Java program transforms to bytecode by Java

compiler. Java bytecode is the base of Java

platform independence. It is the bytecode that

makes Java program to be executed anywhere. Java

promotes the component technology and open

source development. A lot of java classes and java

class libraries with forms as bytecode have been

widely used in network software development.

Their sources were unknown and trust were

unassured. Analyzing the vulnerability only with

source code could not solve the whole problem.

There is a definitely need to analyzing the

vulnerability in java bytecode. It will help to

evaluate the security of an untrusty java component

or system. The bytecode vulnerability analysis can

contribute to java security assurance. There are some characteristics of bytecode

vulnerability analysis. First, the analysis without

Java source code will expand the scope of java

components under analysis. Second, java is

difficult in program analysis because its object

oriented characteristic. Bytecode analysis makes

the program analysis at some a low language level.

This simplifies the problem in a sense. Third, the

size of the program will expand greatly when

converted from source to bytecode. The space and

time of analysis will be larger.

The paper discusses how to use data-flow

analysis to analyze vulnerability. Problems to

apply data-flow analysis in Java bytecode

vulnerability analysis are presented.

2 The Input Dependency of

Vulnerability
2.1 Vulnerability Depends on Program

Input
Vulnerability is some defect or error in the program

which could result system security fault. A security

fault is different from general program fault because

it should be exploited. There are two conditions for a

program to be exploitable. First, there is some

operation with security risk in the program. Second,

an outer input of the program could influence the

operation to violate the security rule of system to

raise a security fault. An exploited program could be

evil by unintentional or intentional design. Both

should satisfy the preconditions above.

Only when the security risk operation in a

program could be controlled by some external

methods, the outer force of the program can make

use of it to violate the system’s security policies.

For a program, accepting outer input data is the

unique way to accept external controlling. So a

vulnerable program inevitably depends on its input

to be converted to fault.

2.2 Typical Security Vulnerabilities with

Input Dependency
According to the 2007 report of OWASP, the ten

most critical web application security vulnerabilities

are [2]:

(A1) Cross Site Scripting (XSS)

(A2) Injection Flaws

(A3) Malicious File Execution

(A4) Insecure Direct Object Reference

(A5) Cross Site Request Forgery (CSRF)

(A6) Information Leakage and Improper Error

Handling

(A7) Broken Authentication and Session

Management

(A8) Insecure Cryptographic Storage

(A9) Insecure Communications

(A10) Failure to Restrict URL Access

The above web application security

vulnerabilities are typical input dependent. There is

a direct relationship between external input and

vulnerability with A1, A2, A3, A4, A5, A8 and A9.

By tracing the propagating path of input data in the

program, it will be assessed how the fault point

could be exploited. Though error handling is

independent of input, there is a close connection

from the input data and the event throwing the

exception. Analyzing the mode that input affects

the exception events will help to expose the

vulnerability. “Denial of service” is another famous

vulnerability. It can be divided into two classes:

resources consuming and stop running. There are

some operations abnormally allocate the system

resources in the first class. It leads to system

resources exhaustion, both space and time. On the

other hand, there is some conditions that make

program or system halted in second class, such as

system halt errors and dead locks. Both classes

could depend on external input of program. And

only when the denial of service can be raised by

external input of program, it belongs to

vulnerability. The information leakage means sensitive

information propagated to insecure area. Although

is not input dependent, it is necessary to track the

sensitive data in the program to catch the problem.

Insecure configuration is another common

vulnerability. It includes ill-suited environment or

debug mechanism left open after deployment and

so on. They are related to generalized input of a

program. These problems depend on input as well.

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 202

3 Data-flow Based Vulnerability

Analysis
3.1 The Principle and Framework
Suppose there is a program Prg. S is a point in Prg

and E is another point. There is an operation named

Oe in S which accepts data De from external. E

includes an operation named Ocia which deals with

confidentiality, integrity and availability of Prg. E is

a security risk point of Prg, named as vulnerable

point Ev. If Ocia at Ev has some parameter which

could be impacted by De in some way, then the

control flow path P from S to E is a vulnerability

propagating path named as Pv.

The goal of vulnerability analysis is to find all of

the Ev in the program and deduce the related Pv.

The result of a vulnerability analysis is a set of

triple <Se, Ev, Pv>. The De is obtained into program

at Se. De affects Ev through Pv. The Se is a

vulnerability propagation start point. The Ev is a

vulnerability propagation end point.

De is determined by input operations Oe in the

language and platform, which is defined by the

language input syntax. Ev is determined by secure

operations Ocia of the system. Ocia depends not

only on secure operations defined by general

security rules, but also security policies of the

application and system.

Data-flow is a static program analysis method. It

is widely used to analyze the mode a program

impacting on its data. It can also contribute to

analyzing the influence which the data gives to the

program as well. Data-flow analysis creates and

solves the data-flow equation at each point of

program. The information of the program’s

data-flow is gathered then. The data-flow equation

of a sentence is :

Out[S]=Gen[S]�(In[S]-Kill[S])

The definition of Gen() and Kill() is closely

related to the application background. Gen() is

operations accepting external data and Kill()

terminating the propagation of it. In() are all the De
reach S before executing of S.

Follow steps below to analyze vulnerabilities of a

program with data-flow analysis:

(1) Create the syntax signatures of Oe and De.
They are used to locate the start points by syntax or

lexical analysis.

(2) Create the syntax signatures of Ocia and Ev.

They are used to locate the end points by syntax or

lexical analysis.

(3) With located De and Ev, find out all

possible P between them by data-flow analysis.

(4) For each P, analyze operations refer to De

to deduce relationships between Ev and De and

evaluate if the Ev could be affected by De.

(5) Investigate the influence that Ev may give

to the program and system according to the

definition of Ocia. Evaluate the possibility that Ev

transforms to security fault on the relation between

Ev and De.

3.2 The Start Point of Vulnerability

Propagation
Any syntax element with input semantics should be

included into the start point of vulnerability

propagation. The inputted objects may be data,

messages, events and even signals. So the parameters,

input sentences of the language, operation on

receiving events and messages will be taken as

candidates.

From the view of syntax analysis, to check the

signatures of vulnerabilities propagation means

checking input relative operations which include

parameters of main program, input sentences as get

and gets, file read operations, environment

variables read, network read and operations

catching messages and signals.

As a secure rule, the information with higher trust

should not be passed to lower trusted object to keep

confidentiality of a system. So some input

operations about inner sensitive information must

be taken into account.

3.3 The End Point of Vulnerability

Propagation
All of the operations affecting system’s

confidentiality, integrity and availability are

candidates of the vulnerability propagation end point.

The semantics of security are complicated. The

behaviors consisted a security operation are related to

some concrete system security policies. The security

operation’s definition relies on application context.

In general, following operations are more danger:

(1) Output operations: various writing

operations. It includes writing to some objects like

file, net, message and queue. There are two sides of

writing poison: controlling the path or content. The

former creates opportunity to write into a secure

area of system, or write some sensitive data to

unprivileged area. The latter can write some noisy

data into specific file to destroy its integrity. It is

often the first step to control writing to attack a

system.

(2) Process management: It includes operations

create process and thread, commands start up

remote server or local utility. The key to damage a

system is to control the executed image. Whether

the executable object could be controlled

maliciousely is the most important.

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 203

(3) Operations on sensitive data: For sensitive

data accessed by a program such as password, key

and some privilege object, attention should be paid

to the operations in its vulnerability propagation

path. There is a possibility that the sensitive data is

propagated degraded.

(4) Resources allocating operations: All the

operations deal with resources allocating are

included. The resources can be memory, disk,

signal time and CPU time, etc. The consuming

denial of service depends on controlling the space

and time of a program.

(5) Operations halting execution: There are

usually some design errors which will stop the

system’s execution. It includes calculating error,

running error, incorrect exception subprogram and

so on. The halt error at the end point of

vulnerability propagation path means there is a

possibility to affect the executing path of a

program. Contrived entering these points can result

halt denial service.

(6) Operations related to security policy and

security mechanism: It depends on the specific

environment of the system. These operations vary

with the security level and application context. The

Java native method is a typical sample.

3.4 The Data-flow Methods for Vulnerability

Analysis
There are various methods could be used to analyze

the data-flow in a program. Some are more specific

for vulnerability analysis. The methods which are

more dedicated to relation between variables are

more suitable. They will effectively expose how

external data affect the vulnerable points.

(1) Reaching-definitions analysis

Reaching-definitions analyze the definition of a

variable that could reach some use of this variable.

Regard a variable gained external data as a

definition of the variable. Vulnerability analysis

traces the propagation of this definition. All of its

uses will be analyzed to investigate if there is a

vulnerable point in the found uses.

While analyze vulnerability with

reaching-definition, to search out all of De in the

program is the first step. Then all the uses of each

De are analyzed to find out if there is some Ev

according to Ocia in the use sentence. The

control-flow paths from De to Ev consist the Pv. The

set of <Se, Ev, Pv> is produced.

(2) Live variables analysis

Live variables analysis investigates if a specific

point is a variable’s use, which is in the path start

from the variable.

Vulnerability analysis finds out the variables gain

input from the external. For each control-flow path

sets out from the found variables, the vulnerable

points are evaluated. If the variable is livable at the

vulnerable point, there is a security risk. All the De

of the program is identified first. Then the set of

live variables is calculated. If there is an Ocia that

one of its parameters is alive, there is an Ev in the

program. The Pv is the control-flow path from De to

Ev.

(3) Upwards-exposed uses analysis

It is deducted by upwards-exposed uses analysis

which uses could be reached by special definition

for a given variable and its uses.

For a risk sentence, it is inferred whether some

variables could be reached by some objects

external. To find out all the Ocia in the program is

the first step. Deduce all the definitions of the

parameters of Ocia. If there is some De in the

definition, there is a vulnerable point.

4 Data-flow Analysis of JAVA

Bytecode
Java programs consist of Java classes. Class includes

variables and methods. There are two ways to

propagate data in Java program: passing parameters

to a method or operating on a variable in the class.

The Java class file is a binary file format for Java

programs. Each Java class file represents a

complete description of one Java class or interface.

One class or interface is converted into a single

class file. To analysis a Java program means to deal

with a set of class files [3].

4.1 The Hierarchy of Java Analysis
The data-flow analysis of Java program is divided

into two hierarchies: local and global. The

data-flow within a method is due to the local

analysis. On the other hand, the global analysis

deduces the data-flow between methods. The local

analysis is the basis of the global. The whole

program’s vulnerability propagation paths will be

clear only when the vulnerability propagation paths

of each method is clear.

The vulnerability analysis of a method

proceduces a set of <Se, Ev, Pv> of this method

M<Se, Ev, Pv>. The Se can be further divided into

two parts. First, the points gain data out of method

by parameters of the method and variables. Second,

other vulnerability propagation start points. The

former can be used to deduce the data propagation

between methods. It is a process different with the

latter. The result of a method analysis is a set of

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 204

quaternion <S1e, S2e Ev, Pv>. The S1 and S2 are

distinctly related to the first and second type of Se.

The vulnerability propagation between methods

is based on inner method analysis. Vulnerability

propagates from method A to B means there is a

data propagation path between A and B. So there

must be a point which belongs to an inner

vulnerability propagation path of A and B

simultaneously. To analyze a vulnerability

propagation of inter methods becomes to find the

intersections of Pv in analyzed methods. If the

intersections of caller method and callee method

are not empty, there is a vulnerability propagation

from the caller to callee.

4.2 The Bytecode of a Method
Binary class file consists of the instructions flow of

the Java virtual machine (JVM). The function of

program is realized by JVM to interpret the JVM

instructions. So the analysis of bytecode means to

analyze the stream of JVM instructions.

Binary class file includes below information of a

method:

ByteCodeMethod {

String AccessModifier;

String ClassName;

String[] ParemetersTable�

int MaxStack�

int MaxLocals;

int CodeLength;

JVMInstructions[] InstructionsStream;

ExceptionTable[] ExceptionTableItems�

LineNumberTable[] LineNumberTableItems;

LocalVariableTable[] LocalVariableTableItems;

}

A class file includes the modifier and name of

method, the possible size of method stack; the

numbers of local variable belong to a method, the

instructions stream of the method and so on.

MaxStack is used to record the numbers the

temporary variables in a method. MaxLocals is

used to number the local variables of the method.

They are useful to build the flow graph during

data-flow analysis [4].

4.3 Control Flow of Bytecode
Constructing the basic block of a method is the start

step of a control flow analysis in a method.

Four cases should be taken into account for Java

bytecode instruction: the branch instruction of

JVM, exception, finally clauses and implied

exception

 When Java source code transforms to bytecode

the branch sentences become JVM branch

instructions such as conditional branching

instructions, unconditional branching instructions

and conditional branching with tables. The JVM

instruction throwing exception is the instruction

athrow. The table index is at top of stack before

athrow. The relative catch can be found with table

index. Finally clause is a miniature subroutine

within a method which means a control branch.

It should be noticed that there are various JVM

instructions which could raise exception impliedly.

These instructions must be included in analysis.

Below are rules to deduce the leader of a basic

block in bytecode control flow analysis:

(1) The first instruction of a method.

(2) The label or offset of a branching instruction.

(3) The first instruction after the branching

instruction.

(4) The catch clause of exception.

(5) The finally clause and ret instruction.

The call graph branch between methods can be

produced to search following instructions:

(1) invokevirtual.

(2) invokestatic.

(3) return.

4.4 Data-flow of Bytecode
JVM is a stack based virtual machine. The

parameters, temporary results, local variables, return

value and so on are saved in a data structure named

Java Stack or Stack Frame.

The instructions relate to data operations are

divided into five classes: stack and local variable

operations, type conversion, integer arithmetic,

logic and floating-point arithmetic. The dada

definition of bytecode is defined as below:

(1) Temporary variable definition.

� Each operation pushes data to stack. It

includes constant push, local variable push,

constant pool index push, object reference

push and binary operation about stack top

with result push.

� Local variable operations.

� Logic and floating-point arithmetic.

(2) Local variables definition: the pop to local

variables.

(3) Defining the temporary variables and local

variables at the same time: arithmetic instruction

with constants and local variables which push

result to stack.

4.5 The Start and End Point of the

Vulnerability Propagation

During vulnerability analysis of bytecode, the I/O

operations relate to the start points include:

(1) The parameters in a parameter table of a

method.

(2) The I/O operations of the Java platform

which are various API of Java class library such as

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 205

Java.io, Java.awt, Java.net, Javax.Servlet,

Javax.Servlet.http and so on.

(3) The native methods about input, which are

included in JNI interface and AWT native interface

To find the end points of vulnerability

propagation in bytecode, follow below rules:

(1) The output parameters of a method.

(2) Public variables of the class.

(3) I/O API of output in Java class library as

above.

(4) Process and thread API.

(5) Synchronizing API.

(6) The native methods about output.

The native methods should be emphasized

because it can bypass the JVM’s security

mechanism. They have become the most important

causations of Java security faults.

5 Implementation
Build an auto vulnerability analysis tool could

improve the analyzing efficiency and make things

easy. There are some core functions in a data-flow

based Java bytecode vulnerability analysis system.

5.1 Vulnerability Signature Database
The vulnerability signature is the description of some

characteristics of software vulnerability. The

signatures should represent the syntax or lexical

feature to support automatic analyzing. There a lot of

tools to do so.

Although there are general rules to define a start

and end point. The concrete vulnerability signature

depends on the characteristics of program language.

Different language possesses different signatures.

Below are the main items should be included in

the vulnerability signature database:

(1) Definitions of the vulnerability propagation

start points. It includes the name, identity, lexical

sign, syntax sign, and relative description and so

on.

(2) Definitions of the vulnerability propagation

end points. It is about name, identity, lexical sign,

syntax sign, description, etc.

(3) Definition of vulnerability propagation

effects. It relies on the data processing functions

and their operation semantics in the specific

language. The propagating capability and

efficiency will be used to evaluate the possible

security damage of the system. It includes name of

data process function, identity, the characteristic of

propagation, some description.

The degree that a data definition could influence

its uses is determined by propagating capability.

For copy propagation, the definition may be passed

to its use directly. It will be a definite propagating

effect. On the other hand, the reference propagation

only has a possible influence. There is an obvious

distinctness between them.

5.2 Parser
Parsing the language elements from the binary file is

the basis of analysis. Every item useful for

vulnerability analysis should be recognized from

original file before analysis. It is transformed to

suitable form for further process then. Besides,

parsing engine produces the statistical information of

symbols, which includes variables name, its attribute,

API, system call, methods, native methods and so on,

to help understand the program.

There are many ready-made tools to parse a

binary program. They provide lexical analysis. The

key is to define a security symbol table in addition

to language syntax symbol table.

5.3 Signature Checker
The signature checker checks the vulnerability

signatures in the parsing result according to the

signatures database above. Its main function is to

extract the start point of data-flow analysis.

The checker investigates the start or end points of

vulnerability propagation. When set off from a

vulnerability propagation start point, the forward

data-flow analysis is used to infer the reaching end

point. When set off from an end point of

vulnerability propagation, it is the backward

data-flow analysis is used to find out the live start

point.

The checker records the position information of

all interested points. Information about method

name, the number and type of parameters should be

included.

Simple signature checker can be implemented

with the help of lexical analysis tools. It could be

combined with the implementing of parsing engine.

The model check techniques are necessary to

analyze behavior signatures. They could provide

more complicated signature extracting.

5.4 Data-flow Analysis Engine
The engine provides various data-flow analysis

functions, such as control flow analysys, data-flow

analysis and inters method data-flow analysis.

Control flow analysis aims at local analysis of a

single method. It extracts the basic blocks of a

method, produces its control flow graph. The

data-flow provides analysis of inner method, such

as live variables analysis, reaching-definitions

analysis, upwards-exposed uses analysis and other

analysis methods.

Inter methods analysis aims at the whole program.

It creates call graphs to show the global view of all

of the methods. Side effect of the method could be

considered to promote the quality of analysis.

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 206

In addition to above components, there are other

components which a vulnerability analysis system

should be included.

The analysis report outputs all the results analysis.

The interim result to help understand the state

could be provided. Some statistics of analysis,

which are about parsing, vulnerable signatures,

could be output by graphic interface to make it easy

accepted. The descriptions of the vulnerability

signature in the database will make the result more

understandable.

The analysis workflow management could make

the analysis procedure configurable. The analysis

schedule mechanism could be built to custom the

procedure.

The architecture of a data-flow based

vulnerability analysis system could be as Fig 1.

Fig. 1: System architecture

6 Conclusion
The vulnerability analysis is useful to evaluate the

security risk of software. It is an important security

assurance technique to support intrusion detection,

security assessment, security test and other activities

to promote system security.

Data-flow analysis is a technique to expose the

global influence of data in a program. Because of

the input dependency of vulnerability, the

vulnerability analysis needs to understand how the

generalized input will propagate in the program.

The data-flow analysis is a great help to it. There

are studies to use data-flow analysis for the

vulnerability analysis. Some vulnerability analysis

tools based on data-flow analysis have been used.

But the architecture of the system has not been

addressed clearly.

The paper discusses the characteristics of the

software vulnerability. The relationship of the

vulnerability analysis and data-flow analysis is

investigated. There is a suggestion about the

framework of a data-flow based analysis system.

Its implementation aims to Java bytecode is

brought out. It will be helpful to design and

develop a data-flow based vulnerability analysis

system.

References:

[1] Metasploit Project, Available:

http://www.metasploit.com/

[2] Ciera Nicole Christopher, “Analysis of Software

Artifacts Evaluating Static Analysis

Frameworks”, Carnegie Mellon University, May

10, 2006

[3] Open Web Application Security Project, The ten

most critical web application security

vulnerabilities, 2007 Update, Available:

http://www.owasp.org

[4] Bill Venners, “Inside the Java virtual Machine”,

The McGraw-Hill Companies, August 25, 1997

[5] Steven S. Muchnick, “Advanced Compiler

Design and Implementation”, 1997

[6] Alfred V. Aho, Ravi Sethi, and Jeffrey D.

Ullman. “Compilers: Principles,Techniques, and

Tools”, Addison-Wesley, 1986.

[7] Zhao Jianjun, “Analyzing Comtrol Flow in Java”,

Department of Computer Science Engineering,

Fukuoka Institute of Technology, 1990.

[8] Michael Martin, Benjamin Livshits, Monica S.

Lam, “Finding Application Errors and Security

Flaws Using PQL: a Program Query Language”,

Computer Science Department, Stanford

University, 2005

[9] Vivek Haldar, Deepak Chandra, Michael Franz,

“Dynamic Taint Propagation for Java”,

University of California, 2005

[10] V. Benjamin Livshits, Monica S. Lam ,

“Finding Security Vulnerabilities in Java

Applications with Static Analysis” ,Computer

Science Department, Stanford University, 2005

[11] Chris Anley., “Advanced SQL injection in

SQL Server applications.”, 2002,

Available:http://www.nextgenss.com.

[12] Klaus Havelund, “Java PathExplorer - A

Runtime Verification Tool”, Kestrel Technology,

NASA Ames Research Center, 2001

[13] Azadeh Farzan, Feng Chen, Jos´e Meseguer,

Grigore Ro¸su, “Formal Analysis of Java

Programs in JavaFAN”, Department of Computer

Science, University of Illinois at

Urbana-Champaign, 2004.

[14] Kendra June Kratkiewicz, “Evaluating Static

Analysis Tools for Detecting Buffer Overflows in

C Code”, Harvard University, March 2005.

[15] Paul E. Black , “SAMATE’s Contribution to

Information Assurance”, National Institute of

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 207

	Text4:

