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Abstract: - This work deals with the objective measurement of the gear noise, in particular  with the 

analysis of the gear whine which represents transmission noises resulting from gears engaged in the torque 
flow, i.e. teeth engagement noise.  

In this paper we present results obtained by our basic noise research on the vibration of gears  using a 
“traditional” Fourier’s  approach compared with an “innovative” Wavelet’s approach. 
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1   Introduction 
Noise and vibration properties of cars have become 
important criteria in the competition between 
automotive manufacturers and together with new 
legislation are an important reason to reduce noise 
and vibrations. 
Moreover, noise and vibrations are seen as 
indicators of the quality of the product: noisy 
products create a “cheap” impression while silent 
products gives the impression of quality. 
Moreover, car manufacturers’ demands, on one 
hand, to reduce the total vehicle weight and on the 
other hand, to increase power at lower speed. As a 
consequence noise due to the gearbox  is expected 
to increase and to be less masked by the engine 
noise. 
The most common method for gear noise 
assessment is subjective evaluations. Evaluators 
either drive the vehicle or listen to the tape on 
which the noise data was recorded to rank the 
noise. The subjective evaluations have some 
drawbacks. First of all, the subjective  ratings are 
not consistent and may change from time to time. 
Secondly, the resolution of the ratings is limited by 
the auditor's ability to distinguish small difference 
in the gear noises. Additionally, the cost for 
conducting a subjective evaluation is much higher 
than for an objective one. Subjective evaluation 
often requires more people to be involved. 

For this reason, this work deals with the objective 
measurement of the gear noise, in particular  with 
the analysis of the gear whine which represents 
transmission noises resulting from gears engaged 
in the torque flow, i.e. teeth engagement noise.  
In this paper we present results obtained by our 
basic noise research on the vibration of gears  
using a “traditional” Fourier  approach compared 
to an “innovative” Wavelet approach. 
 
2  Problem Statement  
Many vehicle manufacturers, research and 
academic institutions have focused their attention 
on vehicle acoustic design. Noise emissions 
produced by the transmission play a significant 
role. In fact, transmission acoustic rating is one of 
the customer’s acceptance criterion. 
The most maddening vibrations are induced by the 
engagement impulse (f = nz / 60, n is the speed and 
z is the number of teeth). The greater the load, the 
more important the entity of this impulse is. The 
angular speed of the mating gears has a relevant 
influence too. Acoustic optimization has to find 
solutions that minimize such impulses. 
Our research activities therefore have been planned 
according to the following development roadmap: 
 
• 1st phase: noise generation i.e. teeth engagement  
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• 2nd phase: noise transfer i.e. gearbox housing 
and bearings 

• 3rd phase: noise emission i.e. the transmission 
housing to the human perception. 

Typically, to reduce the gear whine noise, two 
options are possible: 
 
• optimization of the gear’s macro-geometry e.g. 

using high contact ratio gears that leads to minor 
noise emissions in conjunction with higher 
transmitted power levels 

• optimization of the gear’s micro-geometry e.g. 
by trying to balance load-induced teeth 
deflections with profile corrections which 
generally leads to less noisy transmission 
effects. This is not a suitable solution for an 
overall working range; therefore profile 
corrections must be determined statistically to 
take into account manufacturing deviations 
which will overlap their effect. 

 
This paper focused on the  1st phase. The goal is to 
find a method to process the data in order to find 
the teeth engagement discontinuity during the 
torque transmission which caused noise.  
All the experimental activities are performed in 
Elasis using the Virtual Engine Simulator 
described in the next paragraph. 
 
3  Virtual Engine Simulator 
The ELASIS Virtual Engine Simulator (VES) is 
the latest tool for automotive transmissions NVH 
testing.  A view of a VES setup for testing and 
evaluating the gear noise is shown in Fig. 1. 

 
Fig. 1.  Virtual engine simulator 

 
The major benefit of using VES in gear noise 
testing is its ability to reproduce engine output 
irregularities, therefore, gearboxes can be 
objectively evaluated and tested without the need 
to build their associated engines.  This capability is 
extremely important in reducing the product time 
to market.   

Since VES can accurately reproduce mean value of 
both speed and combustion and inertia forces,  car 
manufactures are able, in this way, to test 
prototype gearbox earlier in the process, before 
prototype engines are available.  
Fig. 2 shows a schematic diagram of the virtual 
engine simulator. As shown in this figure, unlike 
conventional test rigs, this particular virtual engine 
simulator has a mechanical coupling between the 
input dynamometer and a high performance 
dynamic pulse generator.   

Fig. 2.  Virtual engine simulator: schematics 
 
In order to load the gearbox output shafts, each 
half-shaft is equipped with additional 
dynamometers to simulate road loads. The output 
dynamometers are sized to cover a wide range of 
vehicle speeds and torques. In addition to the 
simulated road loads, flywheels are installed on the 
output dynamometer to represent vehicle inertias. 
The virtual engine simulator can be controlled by 
providing excitation time histories generated either 
by  computer software (synthesized) or measured 
on a real vehicle. 
 
4  Experimental testing 
As shown in Figure 3, the test-rig is installed in a 
semi anechoic chamber where dynamometers are 
soundproofed inside enclosures.  In the same way, 
in order to achieve appropriate background 
conditions for gear  noise measurements, the floor 
is covered with soundproofing material. 

 
Fig. 3.  Virtual engine simulator settled in semi 

anechoic chamber 
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Such a set-up, unlike what happens on the vehicle 
or in a power train test-cell, uncouples the noise 
generated by the gearbox from the other noises 
present on the vehicle or generated by the engine. 
For this reason, the noise problem is pronounced 
and consequently, noise investigation becomes 
easier and more objective.   
The test rig is equipped with the following signals: 
 
• engine shaft velocity fluctuation measured by  

magnetic sensors at the flywheel and at the 
primary shaft 

• sound pressure level (SPL) measured by using 
capacitive microphones (sensitivity 0.051 V/Pa), 
located at one meter far from transmission 
housing 

• piezoelectric accelerometers (sensitivity 
1pC/ms-2) placed on the gearbox housings. 

 
The gearbox oil temperature is also monitored 
because of the strong influence of the gear whine 
with the oil viscosity. All the tests are performed at 
70°C. 
 
A five-speed manual shifted transmission is used 
for the analysis presented in this paper. The time 
history acquired on the car is first recorded, during 
a wide-open throttle condition with the 2th gear 
engaged, and then it is reproduced on the test rig. 
The 2th gear is selected because it leads to very 
audible gear whine noise inside the vehicle cabin, 
especially up to 5500 rpm. 
 
5  Data processing and results 
 
5.1  Traditional Fourier’s method  
The accelerometer used in this test has been placed 
on the gearbox housing (Fig. 4), in correspondence 
of the contact point of gears. 

 
Fig. 4. Acceleration  measure point 

 
 

Fig. 5 shows the time history of the 2th gear for the 
engine speed (green, red) and accelerometer 
vibrations (blue).  

Fig. 5.  Time history and vibrations 
 
Duration of signals is roughly 80 seconds and it 
consists of one slow acceleration  in 33 seconds,  a 
stationary phase (12 seconds)  and than a 
deceleration in 33 seconds. 
The conversion from time-domain data to 
frequency domain is performed using the Fast 
Fourier Transform (FFT) [1] technique. In this 
application,  where the engine speed is steadily 
increasing and decreasing (engine run up & run 
down case respectively), a family of FFT 
operations is obtained to scan the range of the 
engine speed of interest. Thus, two Campbell 
diagrams [2] have been created, one for the 
acceleration phase and the other for the 
deceleration phase. 
Acquired signal has been processed with a 
sampling frequency of 51200 hz, using Hanning 
windowing [3] and a resolution of 25 rpm (round 
per minute). 
Figg. 6-7 show the contribution in frequency 
according to engine speed. In order to indicate the 
signal amplitude a chromatic scale is used.  
 

 
Fig. 6.  Campbell diagram during acceleration 

phase 
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Fig. 7.  Campbell diagram during deceleration 

phase 
 
Spectral content is calculated to extract the overall 
levels and engagement orders for both run up and 
run down maneuvers. 
The engagement orders are referred to: 
 

• the gear order (order 19) and its first 
harmonic (order 38) 

• the final reduction order (order 7.4)and 
its first harmonic (order 14.8). 

 
Fig. 8 reports the order analysis for both 
acceleration and deceleration phase. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.  overall level and engagement orders 
 
5.2 Wavelet Transform 
The word wavelet is used in mathematics to denote 
a kind of orthonormal bases in L2 with remarkable 
approximation properties.  
Wavelets allow to simplify the description of a 
complicated function in terms of small number of 
coefficients. Often there are less coefficients 
necessary than in the classical Fourier analysis. 
Wavelets are adapted to local properties of 
functions to a larger extent than the Fourier basis. 
The adaptation is done automatically in view of the 
existence of a second degree of freedom: the 
localization in time (or space, if multivariate 
functions are considered).  

The vertical axis in the next graphs denotes always 
the level, i.e., the partition of the time axis into 
finer and finer resolutions. The advantage of this 
“multiresolution analysis” is that we can see 
immediately local properties of data and thereby 
influence our further analysis. There were attempts 
in the past to modify the Fourier analysis by 
partitioning the time domain into pieces and 
applying different Fourier expansions on different 
pieces. But the partitioning is always subjective. 
Wavelets provide an elegant and mathematically 
consistent realization of this intuitive idea [4]. 
In summary, wavelets offer a frequency/time 
representation of data that allows us time 
(respectively, space) adaptive filtering, 
reconstruction and smoothing. 
Recall that a mother wavelet ψ  is a function of 
zero h-th moment (e.g. see [5], [6], [7], [8])  

∫
+∞

∞−

= 0)( dxxx hψ ,     h ∈ N.  (1) 

From this definition, it follows that, if ψ is a 
wavelet whose all moments are zero, also the 
function ψik(x): = 2 j/2 ψ(2 jx − k) is a wavelet. 
Now consider a wavelet ψ and a function φ such 
that  {{ kj0

ϕ }, {ψjk}, k ∈ Z, j = 0, 1, 2,…} is a 
complete orthonormal system. In this case, a given  
signal s(t), decomposed by wavelet (i.e., CWT) is 
represented in the following detail function  
coefficients 

∫
+∞

∞−

⎟
⎠
⎞

⎜
⎝
⎛ −

⋅= ττψτ dksd jjjk 22

1)(   (2) 

and in the approximating scaling coefficients as 
follows 

( )∫
+∞

∞−

−⋅= τdkτφτsa kj )(
0

 (3) 

Note that, for any j, djk can be regarded, as a 
function of k. Consequently, if the signal s(t) is a 
smooth function, then the relative details are zero, 
since, as said before, a wavelet has zero moments 
(for a detailed argumentation see [5]).  
The sequence of spaces { },jV j Z∈ , generated by 

φ is called a multiresolution analysis (MRA) of 
L2(R) if it satisfies the following properties 
 
     1,j jV V j Z+⊂ ∈  and 

0
j

j

V
≥
U  is dense in L2(R). 

It follows that if { },jV j Z∈ , is a MRA of L2(R), 

we say that the function φ generates a MRA of 
L2(R), and we call φ the father wavelet. 
Besides, based on Parseval theorem, for any s ∈ 
L2(R), it follows that 
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The relation (4) is called a multiresolution 
expansion of s. This means that any s ∈ L2(R) can 
be represented as a series (convergent in L2(R)), 
where ka  and jkd are some coefficients, and 

{ },jk k Zψ ∈ , is a basis for jW , where we define  

1 ,j j jW V V j Z+= − ∈ . 
 
In (1) { }( )jk tψ is a general basis for jW . The space 

jW is called resolution level of multiresolution 
analysis. In the following, by abuse of notation, we 
frequently write “resolution level j” or simply 
“level j”. We employ these words mostly to 
designate not the space jW  itself, but rather the 

coefficients jkd and the function jkψ  “on the level  
j”. 
As the Fourier Fast Transform (FFT), the Discrete 
Wavelet Transform (DWT) is a fast and linear 
operation operating on a data array of length equal 
to a power of 2 and that transforms it in an array of 
equal length but numerically different. Both FFT 
and DWT could be considered as a transformation 
from the original dominion (i.e., time) to a 
different dominion. In both the cases the functions 
used to operate the transformation form a 
Complete Orthonormal System (CONS). Unlike 
trigonometrical basis, which defines one only 
Fourier transform, infinite wavelet bases exist that 
differ for their localization in the dominion of the 
time and for their regularity. 
A particular wavelet basis is characterized by 
numerical filters. In the present work it has been 
applied the filter proposed by Daubechies, which 
includes both wavelets strongly localized and 
wavelets strongly regular.  A filter is characterized 
by L coefficients denoted as: 0 1, , Lh h −K  . 
We considered the Daubechies family of length 

0 34, , ,L h h= K . The first step of wavelet 
transform was represented by the calculation of the 
following  product 

1J JW− =w x  
where { }0 1 1, , , Nx x x −≡ Kx  is the vector of  

2JN = data of which the wavelet transform have 
to be calculated. While 1J −w  is the wavelet vector 
transform (of length L) after the first step of 
calculation; JW  is the N order wavelet 
transformation matrix  
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The white elements are zero. It is important to 
observe the matrix structure. The first raw 
generates the first element of convolution between 
x and the h filter.  
Likewise the third, fifth..., and generally the odd 
raws of matrix generate the third, fifth..., element 
of convolution respectively. 
The even raws generate the same type of 
convolution but with the filter g rather than h. 
Filter g is called also the conjugated one of h and 
represents a pass-high filter. 
It is uniquely determined by means of h as the 
following relation 

1( 1) , 0, , 1.k
k L kg h k L− −= − = −K  

The h and g filters are also named as quadrature 
mirror filters (QMF). Note that g is such to return 
null values if the vector of which we want to 
calculate the transform is sufficiently regular:  in 
practical the coefficients kg  have / 2p L=  null 
moments (in the following it will be esplicitate 
such a condition named as "p-order 
approximation”). 
Therefore the output of the filter h is the vector x 
represented in a coarse shape, while the output of 
the filter g represents the detail that added to the 
coarse information allows to reconstruct the 
original vector. 
We still notice that in the last two raws the 
coefficient h2 and the correspondent high-pass 
filter g2 are present due to the regularity conditions 
stated for the vector x. 
By means of the inverse transform it is possible to 
reconstruct the original vector x of N length by 
means of vectors of N/2 length composed of  
output of the convolution with the low-pass filter h 
and the high-pass filter g. 
The value of the elements of the vector filter h can 
be obtained by imposing the orthonormality 
condition for the matrix WJ  as follows 
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and the “approximation condition of / 2 2p L= =  
order” 
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In the present work (i.e., 4L = ) the solution of 
condition is [5]  
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The DWT consists in applying the Wj matrix in 
hierarchical way to the vector ( )JWx  of length 

2JN = , then to the coarse vector obtained by the 
convolution of x with the low-pass filter h (of 
N/2=2J-1 length, with the WJ-1 matrix), therefore 
still to the vector of N/4 length obtained from the 
next convolution with the filter h, and so on until 
to a prefixed level J0 or when the convolution with 
the low-pass filter supplies a single element. 
The last procedure takes the name of pyramidal 
algorithm. In order to explain the procedure let us 
consider the case N=16=24. 
Therefore the procedure is sensitized as follows  
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where P is a permutation matrix of elements of 
vector x which orders all the coefficients of type 
"c" (i.e., coarse coefficients) and type  “d” (i.e., 
detail coefficients). Practically the Wj matrix of 
order j  acts on coarse coefficients of j level, while 

the detail coefficients of the same level are 
unchanged. 
Therefore at the end the wavelet transform vector 
will be formed as following 
 

( )(0) (0) (1) (1) (2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3)
0 0 0 1 0 1 2 3 0 1 3 4 5 6 7

T
c d d d d d d d d d d d d d d  

 
where (0)

0c  means the coarse coefficient obtained 
at the fourth step of wavelet transform, (0)

0d  
indicates the detail coefficient obtained on the 
same step, (1) (1)

0 1,d d  are the detail coefficients 
obtained at the third step of transform, the 

(2) , 0, ,3d kk = K  represent the detail coefficients 

obtained at the second step and finally 
(1) , 0, ,7kd k = K  the detail coefficients obtained at 

the first step of transform. 
Since the procedure is based on orthogonal linear 
operations equally the WT will show the same 
feature.  
For the calculation of the inverse transform, it will 
be sufficient to repeat the steps of the transform in 
the inverse order. 
The performance of the WT algorithm is evaluated 
for real data. In this first experiment, we 
considered the real data  shown in Fig. 5 as the 
input signal and applied the DWT to each signal 
decomposition level.  The Fig. 9 below shows two 
singularities at 5th and 6th decomposition level. 
 

 
 

Fig. 9 RunUp + RunDown – Wavelet Analysis  
 
6   Conclusions 
This paper presents a new gearbox noise detection 
algorithm based on analyzing singular points of 
vibration signals using the Wavelet Transform. 
The proposed algorithm is compared with a 
previously-developed algorithm associated with 
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the Fourier decomposition using Hanning 
windowing. Simulation carried on real data 
demonstrate that the WT algorithm achieves a 
comparable accuracy while having a lower 
computational cost.  This makes the WT algorithm 
an appropriate candidate for fast processing of 
noise gear box. 
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