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Abstract: - The joint structural importance (JSI) is an important measure of how two components interact in 
contributing to the system reliability.  The value of JSI is positive (negative) if and only if one component 
becomes more important (less important) when the other works.  A consecutive-k-out-of-n system is a linear 
arrangement of n  components such that the system is failed if and only if some consecutive k  components are 
all failed.  In this paper, we study joint structural importance ),( jiJSI  in the consecutive-k-out-of-n system. 

We completely solve ),( jiJSI  for 1=k  (the series system), nk =  (the parallel system), 1−= nk , and 
2−= nk , respectively.  For the other k , we prove that <+=<<=′ )2,1(),1(0),1(),1( kJSInJSIkJSIjJSI  

)1,1(),1( +< kJSIjJSI , for 12 −≤′≤ kj  and 13 −≤≤+ njk .  For a fixed i , we prove that the graph of 
),( jiJSI  has a W-shape property for }1,min{}1,1max{ ++≤≤−− kinjki  with 0),( =iiJSI .  We also 

present exact formula for ),( jiJSI  and obtain many relations among them.   
 
Key-Words: Joint structural importance, Consecutive-k-out-of-n system, Reliability, Birnbaum importance. 
 
1   Introduction 
The Birnbaum reliability importance )(iI  of a 
component i  measures the improvement of the 
system reliability )(PR  over the improvement of the 
reliability ip  of that component [2].  The Birnbaum 
reliability importance )(iI  is defined as   
 ),0(),1()()( iiiii PRPRpPRiI −=∂∂= , 
where iP  denote all the component reliability except 
that of the component i , ),1( ii PR  and ),0( ii PR  are 
the system reliability with component i  working and 
failed, respectively.  Note that the system reliability 

)(PR  can be computed only when the reliabilities of 
all components are well defined.  Without the 
information of component reliabilities, we need to 
know the relative importance of the locations so that 
more reliable components can be assigned to the 
more important locations to maximize the system 
reliability.  The structural Birnbaum importance is a 
special kind of the Birnbaum reliability importance 
where all the component reliabilities are set equal to 
p  so that the importance measure will depend only 

on the structure of a system.  Many kinds of structural 
Birnbaum importance indices have been discussed 
[3-6, 16-18, 20, 21].   

The joint reliability importance ),( jiJRI  of two 
components i  and j  measures how these two 
components in a system interact in contributing to the 
system reliability )(PR .  The joint reliability 
importance ),( jiJRI  is defined as follows.  

),,1,0(),0,1(),0,0(
),1,1()(),(

,,,

,
2

jijijijijiji

jijiji

PRPRPR
PRppPRjiJRI

−−
+=∂∂∂=  

where the jiP ,  will be omitted when no confusion is 
possible.  Joint reliability importance was first 

proposed independently by Hagstrom [10] and by 
Hong and Lie [13].  Based on the definition of 
Birnbaum reliability importance, ),( jiJRI  can be 
interpreted as the change of the Birnbaum reliability 
importance of component i  caused by component 
j ’s deteriorating from working to failed.  The value 

of ),( jiJRI  is positive (negative) if and only if one 
component becomes more important (less important) 
when the other works.  Similar to the problem in 
Birnbaum reliability importance, many researchers 
have studied joint structural importance (setting all 

ppi = ) in many systems: the fault tree [11], the 
two-terminal system [1, 13, 19], the k-out-of-n 
system [12, 15], etc.  Jan first studied joint structural 
importance in the consecutive-2-out-of-n systems 
[15]. 

A consecutive-k-out-of-n system consists of an 
ordered sequence of n  components where the system 
fails if and only if any k  consecutive components 
are all failed.  Relative to low reliability of a series 
system and high reliability but very expensive 
hardware of the parallel system, the consecutive-k 
system has attracted many researchers [5-9, 15-18, 
21].  For the consecutive-2 system, Malon [17] and 
Du and Hwang [9] independently solved a problem 
called the invariant optimal assignment, which has 
the problem of finding the rank of structural 
Birnbaum importance as one of its special cases.  
Malon [18] also solved the assignment problem for 

2,1 −−= nnk , and proved that an invariant optimal 
assignment does not exist for 33 −≤≤ nk , which 
intensified the need to compare structural Birnbaum 
importance. 
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In this paper, we concentrate on the joint 
structural importance in the consecutive-k system.  
We first state several useful formulas for computing 
system reliability in Section 2.  Then we study joint 
structural importance, denoted by ),( jiJSI , in the 
consecutive-k system in Section 3.  We completely 
solve ),( jiJSI  in the consecutive-k-out- of-n system 
for nnnk ,1,2,1 −−= .  For the other k , we first 
study the case of 1=i  and make comparisons among 

),1( jJSI .  On the other hand, given a fixed i , we 
compare the values of ),( jiJSI  and present the 
W-shape property of the JSI  function.  We also find 
the exact formula for some ),( jiJSI  and discuss the 
relationship among them.  Finally, we make a 
conclusion in Section 4.   
 
 
2   System Reliability 
For a consecutive-k-out-of-n system, let )(nR  
denote the system reliability, and )1( inR  and )0( inR  
denote the reliabilities of the system where the 
component i  is working and failed, respectively.  
Note that kqkR −=1)(  and 1)( =nR  for −≤≤ kn0  
1, where pq −=1 .   
Lemma 2.1.  (See [14]) For 1+≥ kn , the reliability 

)(nR  of a consecutive-k-out-of-n system satisfies the 
following recursive relations.  
(i) ∑ =

− −= k
m

m mnRpqnR 1
1 )()( .  

(ii) )1()1()( −−−−= knRpqnRnR k . 
Note that for kn ≥ , )(nR  is decreasing in n . 

Corollary 2.2.  kpqknRknRnR )]1()([)( ++−+= . 
Proof.  By Lemma 2.1 (ii).   

For convenience, by Corollary 2.2, we backward 
derive the reliabilities of a consecutive-k-out-of-n 
system for 11 −≤≤−− nk . 
Definition 2.3.  The reliability of consecutive-k-out- 
of-n system for 11 −≤≤−− nk  is  

 
⎪⎩

⎪
⎨
⎧

−−=
−≤≤−

−=
=

− .1,1
,2,0

,1,1
)(

12 knqp
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Lemma 2.4.    
(i) )0()1()( inin qRpRnR += .  
(ii) )()1()1( inRiRR in −−= .  
(iii) qinRipRnRR in )]()1()([)0( −−−= . 
Proof.  Statements (i) and (ii) follows from the 
definition of the system reliability according to 
component i  working or not.  Statement (iii) follows 
immediately from (i) and (ii).  
Lemma 2.5.  (See [20])   
 )()()()()1( inRiRnRinRipR −<<−− . 
Lemma 2.6.  )1()()( ++> jiRjRiR . 
Proof.  The difference between )()( jRiR  and +iR(  

)1+j  is just the reliability of the cases that both the 
first i-component subsystem and the last j- 
component subsystem are working and the whole 

)1( ++ ji -component system is failed due to the 

)1( +i -st component is failed.  Hence   
 )1()()( ++− jiRjRiR  

.0)1()1(1
0

1
1∑ ∑−

=
−

−−= >−−−−= k
l

k
lkm

ml mjRpqliRpq   
 
 
3   Joint Structural Importance  
In this section, we first consider the joint structural 
importance in the consecutive-k system for −= nk ,1  

nn ,1,2 − .  Note that a consecutive-k system is a 
series system for 1=k , and a parallel system for 

nk = . 
Theorem 3.1.  Consider a consecutive-k-out-of-n 
system. 
(i) For 1=k  (the series case), 0),( 2 >= −npjiJSI  

for any ji ≠ .    
(ii) For nk =  (the parallel case), 2),( −−= nqjiJSI  

0<  for any ji ≠ . 
Proof.  By definition, )0,1()1,1(),( jiji RRjiJSI −=  

)0,0()1,0( jiji RR +− .  
(i) For 1=k , 0000),( 22 >=+−−= −− nn ppjiJSI .   
(ii) For nk = , 22 )1(111),( −− −=−+−−= nn qqjiJSI  

0< .  
Theorem 3.2.  Suppose 1−= nk .  0),( <jiJSI  for 
all ji ≠ , except 0),1( >nJSI . 
Proof.  By definition,   
(i) =−+−−−−= −−− )1()1()1(1),1( 222 nnn qqqnJSI  

02 >−nq .  
(ii) For nj ≠ , −+−−−= − 1(1)1(1),1( 2nqjJSI   

0) 323 <−=− −−− nnn pqqpq .  
(iii) For nji <<<1 , −+−−= 1(111),( jiJSI   

02)2 2323 <−−=− −−−− nnnn qpqqpq .   
Hence, in a consecutive-(n−1)-out-of-n system, 

0),( <jiJSI  for all ji ≠ , except 0),1( >nJSI .  
Theorem 3.3.  Suppose 2−= nk .  0),( <jiJSI  for 
all ji ≠ , except 0),1( =nJSI ,  0)1,1( >−nJSI , and 

)1,2( −nJSI  is positive, negative, and zero for 
21<p , 21>p , and 21=p , respectively. 

Proof.  ),( jiJSI  are computed according to seven 
cases as follows.  For the first three cases, we  
compute ),( jiJSI  by   

)0,0()1,0()0,1()1,1(),( jijijiji RRRRjiJSI +−−= . 
(i) −+−−−−−= −−− 1()1()1()1()2,1( 232 nnn qqqJSI  

0) 44 <−= −− nn pqq .  
(ii) For 23 −≤≤ nj , −−−−= −31(11),1( nqjJSI  

0)1() 4343 <−=−−+ −−−− nnnn pqpqqpq .   
(iii) +−−−−−=− −−− )1()1(1)1,1( 333 nnn qpqqnJSI  

0)1( 333 >=−− −−− nnn qpqq . 
In the following cases, we compute ),( jiJSI  by  

,0()0,1([)]1,0()1,1([),( ijijiji RRRRjiJSI −−−=  
)]0 j . 

(iv) 0),1( 33 =−= −− nn pqpqnJSI .  
(v) For 23 −≤≤ nj , +−= −4(0),2( npqjJSI  

0)3 <−npq .  
(vi) −=+−=− −−−− 1()()1,2( 4433 nnnn qpqqpqnJSI  

)2 p .  Thus )1,2( −nJSI  is positive, negative, 
and zero for 21<p , 21>p , and 21=p , 
respectively. 
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(vii) For 12 −<<< nji , +−= −4(0),( nqjiJSI  
0)2 4 <−npq .  

In the following, we state some properties of joint 
structural importance. 
Lemma 3.4.  Consider a consecutive-k-out-of-n 
system. 
(i) )1,1(),( +−+−= jninJSIjiJSI .  
(ii) ),(),( ijJSIjiJSI = .  
(iii) 0),( =iiJSI .  
(iv) 0),( =jiJSI  for knji <≤≤ ,1 . 
Proof.  Since a consecutive-k-out-of-n system is 
symmetric with respective to the middle location(s), 
we have Statement (i).  Statements (ii) and (iii) 
follows immediately the definition of joint structural  
importance.  If kn < , then == )1,0()1,1( jiji RR  

1)0,0()0,1( == jiji RR  and thus 0),( =jiJSI .  
By Lemma 3.4 (iv), throughout this thesis, we 

discuss JSI  in the consecutive-k-out-of-n system for 
kn ≥ .  Given a fixed i , the following lemma 

simplifies the calculation of the difference between 
),( liJSI  and ),( jiJSI . 

Lemma 3.5.  Given a fixed i , the difference between 
),( liJSI  and ),( jiJSI  is ,1(),(),( iRjiJSIliJSI =−  

).1,0,0()0,1,0()0,1,1()1,0 ljiljiljilj RRR −+−  
Proof.  By the definition of JSI , we have  

 
)].0,0()0,0([)]1,0()1,0([

)]0,1()0,1([)]1,1()1,1([
),(),(

jililiji

lijijili

RRRR
RRRR

jiJSIliJSI

−+−+
−+−=

−
 

Extend each term to include all the reliabilities of 
three components.  We have  

 

).1,0,0()0,1,0()0,1,1()1,0,1(
)]}0,0,0(

)1,0,0([)]0,0,0()0,1,0({[
)]}1,0,0()1,1,0([)]0,1,0(

)1,1,0({[)]}0,0,1()0,1,1([
)]0,0,1()1,0,1({[)]}0,1,1(

)1,1,1([)]1,0,1()1,1,1({[
),(),(

ljiljiljilji

lji

ljiljilji

ljiljilji

ljiljilji

ljiljilji

ljiljilji

RRRR
qR

pRqRpR
qRpRqR

pRqRpR
qRpRqR

pRqRpR
jiJSIliJSI

−+−=
+

−++
+−+
++−
+++

−+=
−

 

   
In a consecutive-2 system, Jan [15] proved that 

0)2,1( <JSI  and 0),1( >jJSI  for nj ≤≤3 .  She 
also proved that )4,1(),1( +−= jnJSIjJSI  in the 
consecutive-2-out-of-n system.  In the following, we 
extend these results to the consecutive-k system.  
First, consider 1=i . 
Theorem 3.6.   
(i) For kj ≤≤2 , 0)1(),1( 2 <−−−= − knRpqjJSI k .  
(ii) For 1+= kj , 0),1( >jJSI .  Furthermore,   
 )1()1,1( 1 −−=+ − knRqkJSI k  for kn 2> , and  
 1)1,1( −=+ kqkJSI  for knk 21 ≤≤+ . 
(iii) For 2+≥ kj , ×−−= − )2([),1( 2 kjRpqjJSI k  

)]1()( −−−− knRjnR . Furthermore, 0),1( >jJSI  
for kn 2> , and 0),1( =jJSI  for knjk 22 ≤≤≤+ .   
Proof.  For kj ≤≤2 , by definition,  

)]0,0()0,1([)]1,0()1,1([),1( 1111 jjjj RRRRjJSI −−−=

 .0)1(0 2 <−−−= − knRpqk  
For 1+≥ kj , by definition and Lemma 2.4 (iii), 

 
)].1()()2([

)0()()2(
),1(

2
11

11

−−−−−−=
−−−−=

−
−−−−

−−

knRjnRkjRpq
RpqjnRkjRpq

jJSI

k
kjkn

kk  

Consider 1+= kj . )1()1,1( 1 −−=+ − knRqkJSI k  
0>  for kn 2> , and 0)1,1( 1 >=+ −kqkJSI  for +k  

kn 21 ≤≤ .  On the other hand, if knjk 22 ≤≤≤+ , 
then 0),1( =jJSI ; and if kn 2> , then 0),1( >jJSI  
by Lemma 2.6.   
Theorem 3.7.  )2,1(),1( jknJSIjJSI −++=  for 

njk ≤≤+ 2 . 
Proof.  Immediately from Theorem 3.6 (iii).  

Theorem 3.7 shows that the JSI  of the first and 
the j -th locations is equal to that of the first and the 

)2( jkn −++ -th locations.  Thus we can discuss 
),1( jJSI  only for 2)2( ++≤ knj . In the following, 

we find an upper bound and a lower bound of 
),1( jJSI  for 2+≥ kj . 

Theorem 3.8.  For 3+≥ kj ,   
 )1,1(),1()2,1(),1( kJSIjJSIkJSInJSI +<<+= . 
Proof.  By Theorem 3.6 (ii) and (iii), for 2+≥ kj , 

 
.0)0(

)]()2()1([
),1()1,1(

11
1

2

>=
−−−−−−=

−+

−−−−
−

−

kjkn
k

k

Rq
jnRkjpRknRq

jJSIkJSI
 

Similarly, by Theorem 3.6 (iii), for 2+≥ kj , 

 )].2()()2([
),1(),1(

2 −−−−−−=
−

− knRjnRkjRpq
nJSIjJSI

k  

By Lemma 2.5, ),1(),1( nJSIjJSI >  for 2+≥ kj , 
and ),1()2,1( nJSIkJSI =+  by Theorem 3.7.  Hence 

)1,1(),1()2,1(),1( kJSIjJSIkJSInJSI +<<+=  for 
3+≥ kj .   

Corollary 3.9.  For },1min{2 nkij ++≤≤  and 
1=i , the rank of ),1( jJSI  are as follows.  

<+=<<=′ )2,1(),1(0),1(),1( kJSInJSIkJSIjJSI  
)1,1(),1( +< kJSIjJSI , for 12 −≤′≤ kj  and +k  

13 −≤≤ nj .   
Proof.  By Theorems 3.6-3.8.  

Figure 1 shows a graph of the joint structural 
importance ),( jiJSI  for 1=i . 

n=26, k=5, i=1
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-0.02

0

0.02

0.04

0.06

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

j=1_26

 
Fig. 1.  ),( jiJSI  for 26=n , 5=k , 1=i , 

and 261 ≤≤ j . 
In the following, we study ),( jiJSI  for 1>i .  

First, consider 1}1,1max{ −≤≤+− ijki . 
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Theorem 3.10.  For 12 +≤<≤ kij , −− )1,( jiJSI  
)(),( 2 kjnRpqjiJSI k −−= − .  Furthermore, ,(iJSI  

),()1 jiJSIj >−  for 1−+≥ kjn  and −jiJSI ,(  
),()1 jiJSI=  for 2−+≤ kjn . 

Proof.  For 12 +≤<≤ kij , by Lemma 3.5,  

 

).(0
)]0,1,0()1,0,0([

)]1,0,1()0,1,1([
),()1,(

2
11

11

kjnRpq
RR

RR
jiJSIjiJSI

k
jjijji

jjijji

−−+=
−+
−=

−−

−
−−

−−  

Hence we have Theorem 3.10 immediately.  
Theorem 3.11.  Suppose kji ≤≤ ,1  and ij ≠ . 
(i) For 1−+≤ kin ,   

 
⎩
⎨
⎧

≤≤+−+−−
−≤≤−= −

−

.1,)1(
,1,),( 2

2

kjknpqpkn
knjjpqjiJSI k

k

 

(ii) For knki 2≤≤+ , 2},min{),( −−= kpqjijiJSI . 
(iii) For kn 2> , ∑ =

− −−−= j
l

k lknRpqjiJSI 1
2 )(),( . 

Proof.  Consider nkji ≤≤<≤1 .  By definition,  
 ∑ =

− −−−= j
l

k lknRpqjiJSI 1
2 )(),( .   

If knki 2≤≤+ , then 10 −≤−−≤ klkn  and thus 
2),( −−= kipqjiJSI .  If 1−+≤≤ kink , we have 

iknkn −−≥−≥−− 11  and kin ≤+− 1 .  Since 
pR 1)1( =−  and 1)( =nR  for 10 −≤≤ kn , we have 

2)1(),( −+−−= kpqpknjiJSI  for kji ≤≤+1 .  
Moreover, by Lemma 3.4 (i), +−= inJSIjiJSI (),(   

)1,(),1()1,1 +′−=′+−=+− jniJSIjinJSIjn  for 
kjin ≤′≤+− 2 , i.e., 111 +−≥+′−≥− knjni .  

Hence if 1−+≤ kin , then   
 21 )(),( −+−−= k

p pqknjiJSI  for kjkn ≤≤+− 1 . 
On the other hand, consider kij ≤<≤1 .  By 

Theorems 3.6 (i) and 3.10,  

.)(
)],()1,([)1,(),(

1
2

2

∑
∑

=
−

=

−−−=
−−−=

j
m

k

j
m

kmnRpq
miJSImiJSIiJSIjiJSI  

If 1−+≤ kin  and knj −≤≤1 , we have =),( jiJSI  
2−− kjpq ; and if knki 2≤≤+ , we have =),( jiJSI  
2−− kjpq .  Hence Theorem 3.11 is proved.  

Remark 3.12.  In Theorem 3.11, we prove that the 
values of ),( jiJSI  is linear for fixed ki ≤ , kn 2≤ , 
and },min{1 iknj −≤≤ .  For kn 2> , ),( jiJSI  is 
no more a multiple of )1,(iJSI  since 

1)( ≠−− jknR . 
Theorem 3.13.  For fixed n  and k , if ji ≠  and 

kjikn ≤≤+− ,1 , then   
 2)1(),( −+−−= kpqpknjiJSI . 
Proof.  Immediately follow from Theorem 3.11 
which depends only on n , k , and p .  
Theorem 3.14.  Suppose kik 22 <≤+ . 
(i) ),()1,( jiJSIjiJSI >−  for 11 −≤≤+ ijk .    
Furthermore,  

 
)].()()[2(

)()2(
),()1,(
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2

jnRinRkjRpq
kjnRjRpq

jiJSIjiJSI

k

k

−−−−−+
−−−=

−−

−

−  

(ii) ),()1,( jiJSIjiJSI >−  for kjki ≤≤+− 1 .  
Furthermore, 
 .0)(),()1,( 2 >−−=−− − kjnRpqjiJSIjiJSI k  
Proof.  (i) By Lemmas 2.4 (iii) and 3.5, for 

11 −≤≤+ ijk ,   

)].()()[2(
)()2(

)]}()0()[2(
)()]2()2({[
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),()1,(
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1
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(ii) By Lemma 3.5, for kjki ≤≤+− 1 , )1,( −jiJSI  
.0)(0),( 2 >−−+=− − kjnRpqjiJSI k   

Theorem 3.15.  Suppose ki 2≥ .    
),()1,( jiJSIjiJSI >−  for 11 −≤≤+− ijki .    

Furthermore,  
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Proof.  Similar to the proof of Theorem 3.14 (i)  
Corollary 3.16. Given a fixed i , ),( jiJSI  is 
decreasing for 1},1max{ −≤≤− ijki . 
Proof.  By Theorems 3.10-3.15.  

In the following, we consider min{1 ≤≤+ ji  
}, nki + .   

Theorem 3.17.  Suppose ki < .  ,(),( iJSIjiJSI <  
)1+j  for }1,1min{ −−+≤≤ nkijk .  Furthermore, 
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In fact, )1(),()1,( 2 −−=−+ − knRqkiJSIkiJSI k . 
Proof.  By Lemma 3.5, for ki <  and ≤≤+ jk 1  

}1,1min{ −−+ nki ,  

)].1(1)[1(
)1()1(
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Note that pR 1)1( =− .  For jki =< , −+ )1,( jiJSI  
0)1(),( 2 >−−= − jnRqjiJSI k . Hence, for ki <  and 

}1,1min{ −−+≤≤ nkijk , )1,(),( +< jiJSIjiJSI .  
   
Corollary 3.18.  Suppose ki < .  For ≤≤+ jk 1  

},min{ nki + ,   
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Proof.  Note that ∑ −
=+= 1 ,([),(),( j

km iJSIkiJSIjiJSI  
)],()1 miJSIm −+ .  Corollary 3.18 follows 

immediately from Theorems 3.11 and 3.17.  
Theorem 3.19.  Suppose ki ≥ .  ,(),( iJSIjiJSI <  

)1+j  for ,1min{1 −+≤≤+ kiji }1−n .    
Furthermore,  
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Hence )1,(),( +< jiJSIjiJSI  for ki ≥  and ji ≤+1  
}1,1min{ −−+≤ nki .   

Corollary 3.20.  Given a fixed i , ),( jiJSI  is 
nondecreasing for },min{1 nkiji +≤≤+ . 
Proof.  By Theorems 3.11, 3.17, and 3.19.  

In the following, we make two more comparisons. 
Theorem 3.21.  )1,(),( ++>+ kiiJSIkiiJSI  for 

kin 2+≥ . 
Proof.  By Lemmas 2.4 (iii) and 3.5,  

).12()0(
)0()1(

)12()0(
)}12()1)(1(

)]12()1([)1({
)1,(),(

1
1

1

1
1

11

11

−−−+
−=

−−−+
−−−−−−

−−−−−−−−=
++−+

−+
−

−−−

−
−+

−−

−−

kinRRpq
RiRq

kinRpqR
kinRpqqiR

kinRpqkinRqiR
kiiJSIkiiJSI

iki
k

kkin
k

k
iki

kk

kk

 

   
Theorem 3.22.  For 12 −+≥ kin  and ki ≥ , 

0),( >+ kiiJSI .  Furthermore,  
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Theorem 3.23.  )1,(),( −−>− kiiJSIkiiJSI  for 

kin 2+≥ . 
Proof.  By Lemma 3.4 (i) and Theorem 3.21, 
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For a fixed i , in the following, we discuss the 

graph of JSI  for ++≤≤−− kijki min{}1,1max{  

},1 n  according to ki < , ki = , and ki > . 
Corollary 3.24.  For a fixed ki <  and +≤≤ ij1  

1+k , the rank of JSI  are as follows.  
(i) >−>>>> )1,()2,()1,(0 iiJSIiJSIiJSI L   
 ),()2,()1,( kiJSIiiJSIiiJSI ==+=+ L ,   
(ii) <+<==+ )1,(),()1,( kiJSIkiJSIiiJSI L  
 ),()2,( kiiJSIkiJSI +<<+ L , and   
(iii) )1,(),( ++>+ kiiJSIkiiJSI .    
Furthermore, the graph of ),( jiJSI  has a W-shape 
with a flat segment for 11 ++≤≤ kij . 
Proof.  By Theorems 3.10, 3.11, 3.17, and 3.21.  
Corollary 3.25.  For a fixed ki =  and min{1 ≤≤ j  

},1 nki ++ , the rank of JSI  are as follows.  
(i) )1,()2,()1,(0 −>>>> iiJSIiJSIiJSI L ,  
(ii) ),()2,()1,( kiiJSIiiJSIiiJSI +<<+<+ L , and  
(iii) )1,(),( ++>+ kiiJSIkiiJSI .    
Furthermore, the graph of ),( jiJSI  has a W-shape 
for 11 ++≤≤ kij . 
Proof.  By Theorems 3.10, 3.11, 3.19, and 3.21.  
Corollary 3.26.  For ki >  and min{1 ≤≤−− jki  

},1 nki ++ , the rank of JSI  are as follows.  
(i) )1,()1,(),( −>>+−>− iiJSIkiiJSIkiiJSI L ,  
(ii) ),()2,()1,( kiiJSIiiJSIiiJSI +<<+<+ L ,  
(iii) )1,(),( ++>+ kiiJSIkiiJSI , and    
(iv) ),()1,( kiiJSIkiiJSI −<−− . 
Furthermore, the graph of ),( jiJSI  has a W-shape 
for 11 ++≤≤−− kijki . 
Proof.  By Theorems 3.14, 3.15, 3.19, 3.21, and 3.23.
   

Figure 2 shows a graph of the joint structural 
importance ),( jiJSI  for ki >  and +≤≤−− ijki 1  

1+k . 
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Fig. 2. ),( jiJSI  for 50=n , 14=k , 20=i , 

and 355 ≤≤ j . 
In the following, we consider the JSI  of the last 

k  components for a fixed i . 
Theorem 3.27.  )1,(),( +> jiJSIjiJSI  for kij +≥  
and 11 −≤≤+− njkn . 
Proof.  For 1+≥− kij , by Lemmas 2.5, 3.4 (iii), and 
3.5, 
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On the other hand, for kij =− ,   
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 0)1()1,(),( 1 >−=+− −kqiRjiJSIjiJSI .  
We compare Theorem 3.27 with Theorems 3.17 

and 3.19 as follows. 
Remark 3.28.    
(i) If kij +≥  and 11 −≤≤+− njkn , then  
 )1,(),( +> jiJSIjiJSI .   
(ii) If kiji +<<  and 11 −≤≤+− njkn , then   
 )1,(),( +< jiJSIjiJSI . 

Next, we compare ),( niJSI  with ),( kniJSI − . 
Theorem 3.29.  ),(),( kniJSIniJSI −<  for −≤ ni  

k3 . 
Proof.  By Lemma 3.5,   
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4   Conclusion 
In this paper, we study joint structural importance in 
the consecutive-k-out-of-n system.  We introduce the 
definitions of Birnbaum reliability importance, joint 
Birnbaum importance, and joint structural 
importance and state several useful formulas for 
computing the reliability of consecutive-k system.  In 
Section 3, we first completely solve ),( jiJSI  for 

1=k  (the series system), nk =  (the parallel system), 
1−= nk , and 2−= nk , respectively.  For the other 

k , we study ),( jiJSI  for 1=i  and show that the 
values of joint structural importance is symmetric to 
⎣ 2)2( ++ kn ⎦ and ⎡ ⎤2)2( ++ kn .  We also prove 
that +=<<=′ kJSInJSIkJSIjJSI ,1(),1(0),1(),1(  

)1,1(),1()2 +<< kJSIjJSI , for 12 −≤′≤ kj  and 
13 −≤≤+ njk .  On the other hand, given a fixed i , 

we prove that the graph of ),( jiJSI  has a W-shape 
property for }1,min{}1,1max{ ++≤≤−− kinjki  
with 0),( =iiJSI .  We show that the values of 

),( jiJSI  is decreasing for the last k  components.  
Note that the results of JSI  is related to those of 
Birnbaum structural importance.  
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