
An Efficient Specification for Model Checking Using Check-Points
Extraction Method

CHIKATOSHI YAMADA
Okinawa National College of Tech.

Dept. of Inf. Comm. Syst. Eng.
905 Henoko, Nago, Okinawa 905-2192

JAPAN

YASUNORI NAGATA
Univ. of the Ryukyus

Dept. of Electrical & Electronics Eng.
1 Senbaru, Nishihara, Okinawa 903-0213

JAPAN

Abstract: In design of complex systems, embedded systems, and other critical systems, model checking, explores
a finite state space to determine whether or not a given property holds, has played an important role. However, it
is inefficiency to verify the entire systems. This article considers the case where designers of systems can extract
check-points easily in model checking of formal verification. Moreover, we demonstrate some verification results
by SPIN and NuSMV model checking tools.

Key–Words:Model checking, Linear temporal logic, Check-points extraction method

1 Introduction

Today, industrial designs are becoming more and
more complex as technology advances and demand
for higher performance increases. Especially, hard-
ware and software systems are widely used in ap-
plied field where no failure is permitted: tele-
phone switched network, electronic commerce, medi-
cal equipment, and other critical systems. The validity
of a design accompanies checking whether the physi-
cal design satisfies its specification. In traditional de-
sign flow, validation is accomplished through simula-
tion and testing. Some errors inside a design may ex-
hibit nondeterministic behaviors, and therefore, will
not be reliably repeatable. This makes testing and de-
bugging using simulation difficult. Also, exhaustive
testing for nontrivial designs is generally infeasible,
therefore, testing provides at best only a probabilistic
assurance[1].

In design of complex systems, embedded sys-
tems, and other critical systems, model checking, ex-
plores a finite state space to determine whether or
not a given property holds, has played an important
role. Model checking of formal verification ascertains
whether designed systems can be executed or spec-
ified. Various formal methods for verification have
been studied[1, 2, 3, 4]. However, formal verification
has problems of its own class too. The major prob-
lem with automatic formal verification is that a large
amount of memory and time is often required, because
the underlying algorithm in these methods usually in-
volves systematic examination of all reachable states
of the system to be verified. As the number of reach-

able states increases rapidly with the size of the sys-
tem, the basic algorithm by itself becomes impracti-
cal: the number of states for the system is often too
large to check exhaustively within the limited time and
memory that is available. This phenomenon is known
as the state space explosion problem[1, 2].

In this research, we focus on specification process
of model checking in formal verification shown in
Fig.1, and to propose a new method which can extract
verification check-points inductively from modeling
systems. System designers can easily derive check-
points of verified systems by using the method. The
rest of this article is organized as follows: In section 2,
Model Checking, Signal Transition Graph, Temporal
Logic are briefly explained, and in section 3 our pro-
posed Check-Points Extraction Method is described
by means of procedure of specification. Moreover,
some models are used for verification to compare by
SPIN and NuSMV model checking tool in section 4.
Finally, we summarize the discussion in section 5.

2 Preliminaries

2.1 Model Checking
The principal validation methods for complex sys-
tems are simulation, testing, deductive verification,
and model checking. Simulation and testing both in-
volve making experiments before deploying the sys-
tem, testing is performed on the actual product. In
the case of circuits, simulation is performed on the
design of the circuit, whereas testing is performed on

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 208

Systems

Signal Transition Graph

Relational State Graph

Check-Points Extraction

Model Checking (SPIN, NuSMV)

Proposed MethodTraditional Method

Modeling

Specification

Verification

Petrify tool

Temporal Order Relation

Figure 1: The framework of proposed method.

the circuit itself. In both cases, these methods typi-
cally inject signals at certain points in the system and
observe the resulting signals at other points. These
methods can be a cost-efficient way to find many er-
rors. However, checking all of the possible interac-
tions and potential pitfalls using simulation and test-
ing techniques is rarely possible. Formal verification
attempts to overcome the weakness of non-exhaustive
simulation by proving the correspondence between
some abstract specification and the design in hand.

An important issue in specifications complete-
ness. Model checking provides means for checking
that a model of the design satisfies a given specifi-
cation, but it is impossible to determine whether the
given specification covers all the properties that the
system should satisfy.Safety propertyexpresses that,
under certain conditions, nothing badwill happen.
Liveness propertyexpress that, under certain condi-
tions, something goodwill eventually happen.

2.2 Signal Transition Graph
In order to describe highly concurrent systems, graph-
based specification methods have been widely used.
An Signal Transition Graph (STG)[6], a labeled in-
terpreted Petri Net[7], has been considered as a well-
suited specification method to describe asynchronous
circuits.

Definition 1 (Petri Net (PN)). A Petri Net is a bi-
partite directed graph consisting of 4-tuple

∑
=

(P, T, F,m0), where

1. P is a finite set of places.

2. T is a finite set of transitions, satisfyingP ∩ T =
ϕ andP ∪ T = ϕ .

3. F is a flow relationF ⊆ (P × T) ∪ (T × P),
specifies binary relation between transitions and
places.

4. m0 is the initial marking of the PN.

When transitions are interpreted as rising and
falling transitions of signals of a control circuit, an
STG is one interpretation of a PN.

Definition 2 (Signal Transition Graph (STG)). Let
J be a set of signals of a network, ASignal Transition
Graphdefined onJ is a Petri Net

∑
J = ⟨ P, T, F,M0

⟩ with T : J → { + , - } .

Each transition of the STG is interpreted as a ris-
ing transition or a falling transition of a signal.

Consider an arbiter module shown inFig.2. An
STG for the arbiter module is shown inFig.3, where
’+’ mean a rising edge and ’-’ means a falling edge of
a certain signal, respectively. This example uses two
signalsu0 andu1. Black circle on a transition edge
indicates a token. A transition is enabled when all
input places have at least one token. When an enabled
transition fires, it removes one token from each input
place and adds one token to each output place.

user1 user2

arbiter

u1i u1o u2i u2o

Figure 2: An arbiter module.

u0i+ u1o+ u0i- u1o-

u0o+ u1i+ u0o- u1i-

Figure 3: A signal transition graph forFig.2

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 209

2.3 Temporal Logic
Temporal logic[1, 2, 4, 5] is a formalism for describ-
ing sequences of transitions between states in a reac-
tive system. In the temporal logics that we will con-
sider, time is not mentioned explicitly; instead, a for-
mula might specify thateventuallysome designated
state is reached, or that an error state isneverentered.
Properties likeeventuallyor neverare specified using
specialtemporal operators. These operators can also
be combined with boolean connectives or nested ar-
bitrarily. Temporal logics differ in the operators that
they provide and the semantics of those operators. Its
operators mimic linguistic constructions (the adverbs
”always” , ”until” , the tenses of verbs, etc.) with
the result that natural language statements and their
temporal logic formalization are fairly close. Finally,
temporal logic comes with a formal semantics, an in-
dispensable specification language tool.

2.3.1 Linear Temporal Logic(LTL)

Temporal logic allows us to formalize the properties
of a run unambiguously and concisely with the help of
a small number of special temporal operators. Most
relevant to the verification of asynchronous process
systems is a specific branch of temporal logic that is
known as linear temporal logic(LTL), commonly ab-
breviated as LTL. The semantics of LTL is defined
over infinite runs. With help of the stutter extension
rule, however, it applies equally to finite runs[1].

Here we give descriptions of LTL. LTL is a sort
of temporal logic, which has the following formulas:

• ¤ q : means thatq always holds for all successor
states on a certain path.

• ♦ q : represents thatq must be sometimes true
for only one successor state of the path, and is
similar to the formula which expresses future in
linear temporal logic.

• pUq : is thatp must be true on the path states,
beginning at the current state, untilq becomes
true.

• Xp : then simply states thatp is true in the im-
mediately following state of the run.

The correctness of properties to be verified is usu-
ally specified in LTL. The LTL is extending proposi-
tional logic with temporal operators that express how
propositions change their truth values over time. Here
we use temporal operators: Operators¤, ♦, andX
meaningglobally, sometime in the future, and next
time, respectively.

3 Check-Points Extraction Method

3.1 Strong/Weak Temporal Order Relation

In verifying behaviors of a system, checking all sig-
nal events is inefficient. Reducing signal events to be
checked is necessary for specifying behaviors of the
system. Here, We consider a system which has 3-
inputs (a , b , c) and 2-outputs (x , y). Suppose that
behaviors of the system occur asa → x → b → c →
y → a , repeatedly. All relations of the signal events
can be indicated as follows:

{(a , x) , (a , y) , (x , b) , (b , c) , (b , y) , (c , y)},

where (a , x) indicates that outputx occur after input
a . Although outputy is not an immediate successor
of input a , (a, y) can be considered because outputy
must occur after inputa in the future. Definitions of
strong/weak temporal order relationsare as follows:

Definition 3 (strong temporal order relation). A
strong temporal order relation is any inverse input-
output relation of event sequences.

Definition 4 (weak temporal order relation). A
weak temporal order relation is any relation of input
signal events.

Thus, behaviors of the system can be specified by in-
troducing strong/weak temporal order relations as fol-
lows:

{ (a , x) , (a , y) , (b , y) , (c , y) }

Its specification shows that outputx can occur after
input a and outputy can occur by rendezvous inputs
a, b, andc.

3.2 Converting STG to State Graph

To explain the procedure of the proposed method, we
especially consider an arbiter module shown inFig.2.
Thus we describe specification of temporal formulas
for the arbiter module. The STG of the arbiter module
can be drawn inFig.3. For the STG, states are con-
nected with labeled edges as shown inFig.4 to rep-
resent order relations of events. Converting the STG
to the state graph can be made by Petrify tool[8] au-
tomatically. A branch expression forFig.4 is shown
in Fig.5. The procedure of the proposed specification
method is described in the succeeding sections.

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 210

u0i+

u0o+

u1o+

u1i+

u0i-

u0o-

u1o-

u1i-

1

0

2

5

3

46

7

9

11

13

8

10

12

u1o+

u1o+

u0i-

u0i- u0o+

u0o+

u1i+

u0i-u0o-

u1i-

Figure 4: A state graph forFig.3.

u0i+

u0o+

u1i+

u0i-

u0o-

u1o-

u1i-

u1o+

u1o+

u0i-

u0i-u0o+

u0o+

u1i+

u0i-

u0o-

u1i-

u1o+

u1i+u1i+

u0o- u0o- u0o-

u1i- u1i- u1i-u0i-

u1o- u1o- u1o- u1o-

A B C D E

Figure 5: A branch expression for the state graph.

3.3 Procedure of Specification
In this section, we describe the procedure of the pro-
posed specification method shown inFig.6. This pro-
cedure corresponds to the part in the wavy arrow line
in Fig.1. The procedure is composed of five steps
shown inFig.6. Here, we explain the procedure as
follows:

[STEP.1]
In this step, event sequences are extracted from branch
expression, for example, path (A), (B), (C), (D) and
(E) are extracted fromFig.5.

(A) u0i+ u0o+ u1i+ u1o+ u0i− u0o− u1i− u1o−
(B) u0in+u0o+ u1i+ u1o+ u0o− u1i− u0i− u1o−
(C) u0i+ u0o+ u1o+ u0i− u1i+ u0o− u1i− u1o−
(D) u0i+ u1o+ u0o+ u0i− u1i+ u0o− u1i− u1o−
(E) u0i+ u1o+ u0i− u0o+ u1i+ u0o− u1i− u1o−

[STEP.1]

Extracting all paths from branch expression.

[STEP.2]

Extracting IO(Input-Output) relations.

[STEP.3]

Introducing temporal operators to an IO relation.

[STEP.4]

Specifying all paths using temporal formulas.

[STEP.5]

Combining transition relations for the same output.

Figure 6: Procedure of Specification.

[STEP.2]
In this step, checked signal events can be reduced by
introducingstrong/weak temporal order relations.

[STEP.3]
In each path, if IO relation shows that there is immedi-
ate successor, specified asX operator, otherwise spec-
ified as♦ operator.

[STEP.4]
In all paths, relations of the same temporal operator
and the same IO can be extracted. Otherwise only the
same IO relation can be extracted. Since♦ expresses
”sometime in the future,” the nextoperatorX can be
covered asX ⊆ ♦ in order to applyPartial Order Re-
duction. Thus, the extracted same IO relation can be
gathered by♦.

[STEP.5]
In all paths, relations of the same output can be com-
bined.

¤ [♦(u0i+ , u0o+) ∨ ♦(u0i+ ∧ u1i+ , u0o−)
∨ ♦(u0i+ ∧ u1i+ , u1o+) ∨ ♦(u0i− ∧ u1i+ , u1o−)]

Check-points can be extracted by repeating the
above-mentioned steps.

4 Verification Results
In this section, we show verification results for a
shared resources access structure shown inFig.7. All

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 211

these model verifications are performed on an 2.4GHz
Core 2 Duo processor under Linux with 2GB of avail-
able RAM. In this article, all simulations are verified
by SPIN version 4.2.9, XSPIN version 4.3.0[1, 3, 9,
10], and NuSMV version 2.4.3[11].

Shared
resources

Semaphore
or

Mutex

Cell 1 Cell 2 Cell 3 Cell n
....

Figure 7: A shared resources access structure.

For the structure, we report the number of OBDD
nodes necessary to represent the corresponding struc-
ture, transitions, and memory required by the systems
to analyze the structure. Here,CPE indicates veri-
fication results with check-points extraction method,
andNormal indicates verification results without the
method, respectively. For verification of semaphore
by SPIN shown inFig.8, results are not much differ-
ent between with and without the method. Similarly,
verification results of mutex are also not much.

Moreover, performance results of semaphore and
mutex by NuSMV are shown inFig.9 and Fig.10,
where the number of cells refer to the number of cell
modules shown inFig.7. For the results of semaphore,
verification cannot be improved very much. On the
other hand, verification of mutex shows efficient re-
sults for more and more larger structures.

5 Conclusion
In design of complex systems, embedded systems,
and other critical systems, model checking, explores
a finite state space to determine whether or not a
given property holds, has played an important role.
However, it is inefficiency to verify the entire sys-
tems. This article considered the case where designers
of systems can extract check-points easily in model
checking of formal verification. Users must generally
know well temporal specification because the spec-
ification might be complex. Our proposed method,
check-points extraction method, can gain temporal

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 2 4 6 8 10

Normal

CPE

Cells

Transitions

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 2 4 6 8 10

Normal

CPE

Memory [B]

Cells

Figure 8: Verification performance ofsemaphore
by SPIN: Transitions(upper), amount of Memo-
ries(lower).

formula specifications inductively. We aimed at input-
output order relations for systems, not considering
output-input order relations. Furthermore, we defined
strong/weak temporal order relations in the procedure
of specification. Weak temporal order relations in-
clude orders of inputs implicitly. Strong temporal or-
der relations express inverse input-output order rela-
tions. We showed that the verification tasks are re-
duced for states, transitions, and memory with our
proposed inductive specification method. System de-
signers can easily lead complex temporal formulas
by using the method. In verification results, espe-
cially, required memory was able to reduced for model
checking. Then, it is assumed to be research work in
the future to verify embedded systems design.

References:

[1] E.M. Clarke, O. Grumberg, and D. A. Peled:
Model Checking, MIT Press, 2001.

[2] T. Kropf: Introduction to Formal Hardware Ver-
ification, Springer, 1999.

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 212

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 5 10 15 20

OBDD nodes

Cells

Normal

CPE

 4.5e+006

 5e+006

 5.5e+006

 6e+006

 6.5e+006

 7e+006

 0 5 10 15 20

Normal

CPE

Memory [B]

Cells

Figure 9: Verification performance ofsemaphore
by NuSMV: OBDD nodes(upper), amount of Memo-
ries(lower).

[3] B. Berard, M. Bidoit, A. Finkel, F. Laroussinie,
A. Petit, L. Petrucci, P. Schnoebelen, and
P. McKenzie: Systems and Software Verifica-
tion: Model-Checking Techniques and Tools,
Springer, 2001.

[4] Kenneth L. McMillan: Symbolic Model Check-
ing, Kluwer Academic Publishers, 1993.

[5] Dov M. Gabbay, Mark A. Reynolds, and
Marcelo Finger:Temporal Logic Mathematical
Foundations and Computational Aspects, Vol-
ume 2, Oxford Science Publications, 2000.

[6] Sung-Tae Jung and Chris J. Myers: ”Direct
Synthesis of Timed Circuits From Free-Choice
STGs,”IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, Vol.21, No.3,
pp.275–290, March 2002.

[7] Alex Yakovlev, Luis Gomes and Luciano
Lavagno: Hardware Design and Petri Nets,
Kluwer Academic Publishers, 2000.

[8] J. Cortadella, M. Kishinevsky, A. Kondratyev,
L. Lavagno, and A.Yakovlev: ”Petrify: a
tool for manipulating concurrent specifications

 500000

 1e+006

 1.5e+006

 2e+006

 2.5e+006

 0 5 10 15 20

OBDD nodes

Cells

Normal

CPE

 1e+007

 2e+007

 3e+007

 4e+007

 5e+007

 6e+007

 0 5 10 15 20

Memory [B]

Cells

Normal

CPE

Figure 10: Verification performance ofmutex by
NuSMV: OBDD nodes(upper), amount of Memo-
ries(lower).

and synthesis of asynchronous controllers,”IE-
ICE Transactions on Information and Systems,
Vol.E80–D, No.3, pp.315–325, 1997.

[9] Gerard J. Holzmann:The SPIN Model Checker –
Primer and Reference Manual, Addison-Wesley,
2004.

[10] http://spinroot.com/

[11] http://nusmv.irst.itc.it/

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 213

