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Abstract: - This paper proposes a new method for the diagnosis of insulation aging. The proposed system 

measures the partial discharge acquired on-line from a Data Acquisition System (DAS) and acquires two-

dimensional (2D) patterns from wavelet analysis. Using this data, the design for a Neuro-Fuzzy Model (NFM) 

that diagnoses insulation degradation in electrical equipment is developed. The system is implemented in a 

prototype system and its validity is evaluated by numerical analysis and simulation. 
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1   Introduction 
Dependable equipment performance and operation is 

an important factor in the reliability of industrial 

facilities. This is largely due to the steadily 

increasing use of larger and more powerful Flexible 

Assembly (FA) and Computer Integrated 

Manufacturing (CIM) systems in industrial 

production and manufacturing.  As these machines 

become more autonomous, insulation breakage, due 

to overloading and insulation degradation in high 

voltage electrical equipment, such as Potential 

Transformers (PT) and Current Transformers (CT), 

can cause serious production and safety risks in 

autonomous systems. Insulation degradation is 

caused by an unbalanced distribution of electrical 

fields and the existence of internal insulation 

material voids that originate from poor insulation 

production and molding technology. As an 

insulating material degrades, the electrical and 

mechanical characteristics of the system become 

unpredictable, often resulting in serious and costly 

failures and safety hazards.  Partial discharge across 

an insulating material is directly related to insulation 

degradation and the main cause of failure in the high 

voltage electrical equipment. 

It has been found that persistent observation of 

partial discharge is an effective method for 

insulation degradation diagnosis to reduce and avoid 

insulation failures. Detection methods for partial 

discharges in electrical equipment, such as the 

detection of an electrical current pulse produced by 

a partial discharge using a Rogowski coil, 

measurement of electromagnetic waves, and 

detection of ultrasonic waves by equipment probes 

in a transformer box, have been studied [5, 6, 8, 9], 

but it is difficult to get reliable data from these 

methods because of the electromagnetic and 

ultrasonic wave noise in this complex environment. 

Even when it is possible to perform practical 

observations of the partial discharge, it is difficult to 

define a standard for the insulation degradation 

process, classify the degradation status and diagnose 

the system, due to the system’s electrical and 

mechanical complexity. Recently the 3D pattern of 

partial discharges, utilizing phase, magnitude and 

count characteristics, has been used to evaluate the 

relationship between partial discharges and the 

insulation degradation status, but accurate diagnosis 

needs to apply expert knowledge for proper 

performance. In order to develop this type of 

knowledge integration, the parameters for an 

automatic recognition inference system must be 

investigated and their interrelationship identified. 

The study of diagnostic systems for insulation 

degradation has concentrated on the investigation of 

a new analysis method in partial discharges and the 

application of this method to develop a practical 

diagnosis system [2, 4, 5, 6, 7 10, 11]. These 

methods have exhibited difficulties in field testing 

since the dynamic characteristics of insulation 

degradation are highly nonlinear and not easily 

modeled. Furthermore, these methods require 

complex, expensive and high precision hardware.  

To address this issue, this paper proposes a neuro-

fuzzy diagnostic model to diagnose insulation 
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degradation using 2D patterns of the count and 

magnitude of partial discharges from phase invariant 

periodic data and compares it to the 3D patterns 

developed in existing quantitative methods. 

 

 

2   Partial Discharge Analysis 
Partial discharge is the electrical phenomenon where 

current leaks outside of a closed circuit through 

insulating materials. This results in the progressive 

degradation and breakdown of insulation. The 

categories of the phenomenon are internal discharge, 

surface discharge, corona discharge, electrical tree 

discharge and discharge through a material with low 

insulation strength. It generally occurs in the 

insulation cavities containing gas or oil.  The 

breakdown point of an insulator is determined by the 

position, cavity shape and the type and pressure of 

the cavity gas or oil. Additional cavity materials that 

induce low voltage discharge include dust, paper, 

fabric and other materials.  

   Fig. 1 shows the mechanics of a partial discharge 

from an AC voltage source. In Fig.1, 'a' denotes the 

branching electric charge through leaking insulation, 

'b' denotes the electric current through the insulator 

connected to a cavity and 'c' corresponds to the 

properly operating part of the insulator. If a voltage 

is applied to the circuit, 'c' charges to the maximum 

and the insulation has allowed a discharge. This 

charge and discharge process is cyclically repeated. 

 

Fig.1. a-b-c Circuit 

 

     In Fig. 2, Va and Vc are the voltages applied to 

the insulator and cavity, respectively. When Vc 

approaches the insulation breakage voltage U+, 

breakage occurs in the cavity. After discharging, the 

voltage drops to the remaining voltage V+. Here U+ 

is also called the discharge igniting voltage and 

given by a Paschen curve for the cavity gas. Partial 

discharge accompanies physical phenomena such as 

current, electromagnetic and ultrasonic waves and 

light.  These physical variables can be measured and  

 

Fig. 2.  Generation of Partial Discharge 

 

utilized in the analysis of the dynamic characteristics 

of partial discharges. The current wave generated by 

a partial discharge is measured and utilized in the 

analysis of the dynamic characteristics of partial 

discharge and the correlation between partial 

discharges and insulation degradation is exploited. 

Insulation degradation may then be diagnosed from 

these characteristics.  

 

2.1 Wavelet Transformation (WT) 
A wavelet is defined as the signal whose average is 

effectively zeroed in a finite period. Wavelet 

analysis recursively decomposes the original signal 

using the root wavelet transition value and variant 

scale value. It is an effective method to detect 

instant signal change, because the signal trend in 

multiple frequency components can be measured in 

a real time manner. Traditional Fourier Transform 

(FT) decomposes the signal into sinusoidal waves 

with different frequencies and differs from Wavelet 

Transformation (WT). FT analyzes the signal in 

time for the whole range (time-Volt) into a 

frequency spectrum (frequency-magnitude). FT has 

difficulty in analyzing continuous frequency 

components. Although Short-Time Fourier 

Transform (STFT) can be applied to solve this 

problem, WT is more effective for real time signal 

analysis [1,2]. WT also has the property of filtering 

out noise, thereby minimizing the effect of noise and 

providing the proper characteristics for nonlinear 

system analysis [3, 4]. WT has a continuous or 

discrete parameter scale value and a shift or position 

index.  Continuous WT (CWT) in the square integral 

Hilbert space is: 
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where a is the real scale index, τ is the shift index 

and and Φ(t) denotes the scaling function. 

  Fig. 3 shows results of CWT analysis represented 

by the variables time, scale and coefficient using the 

Matlab 5.0 GUI tool. A small scale corresponds to a 

high-speed signal and large scale to a low speed 

signal. Thus, adaptive real time signal processing is 

possible and each coefficient changes according to 

the scale value.  This coefficient corresponds to 

original signal's frequency component. 

 

Fig. 3. Signal by CWT analysis 

 

A discrete WT (DWT) has the following definition: 
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Here, Φ (t) is the primary function, a is the scale 

index and τ is location index. The scale index 

denotes the width of WT and the location index 

denotes the position of the WT. W(t) is a scaling 

function as follows: 
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Here, c is coefficient of WT. Coefficients should 

satisfy the following condition: 
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Here, delta is Kronecker’s delta function. In a DWT, 

a scale value can be varied in the finite range.  A 

large value can classify low frequency components 

and a small value can classify high frequency 

components. Large and small-scale values have 

coefficients, called approximations and details, 

respectively.  In Fig. 4, decomposition is shown with 

the multiple level components according to scale 

values. For optimal signal processing, the selection 

of optimal coefficients is performed using various 

measurement functions or the neural network’s 

learning ability. Optimal levels for tree structures 

can be obtained [4, 5]. 

 

Fig. 4.  Signal analysis using 1-D DWT 

 

In this paper, noise contained in the current wave 

measurement signal is removed using wavelets. 

From the filtered signal, a 2D pattern data of 

insulation degradation is obtained by counting the 

impulse wave of current above the threshold 

magnitude. 

 

 

3   Design of the Diagnosis Model  
In this study, the diagnosis model uses the neuro-

fuzzy model, which is suitable for noise and 

nonlinear properties. Conventional neural network 

models are complex and difficult to understand. 

Robustness is a merit of neural networks. A more 

robust model is desirable for the proper processing 

of noisy signals, since the signal generated by 

discharge is so fine. An inference system based on 

the neuro-fuzzy model and pattern recognition 

method using wavelets is adapted for this 

application. 

 

3.1 Discharge Measuring System  
The partial discharge measuring system depicted in 

Fig. 5 consists of a Rogowski coil to sense the 

current wave, a filter for noise reduction, and other 

parts for data acquisition, as required by the data 

acquisition system. A stable high voltage power 

source is applied and the sampling frequency is 

10Khz. The current wave generated by the partial 

discharge is measured. Data is continuously 

acquired for 12 cycles per group. The acquired 

signal is a random signal in the range of 0 to 3 and 

contains noise. After filtering out the noise using 

wavelets, the resulting signal has a low frequency of 

about 60Hz. Analysis of the signal using wavelet is 

done with the maximum impulse signal and signal 

normalization to correlate the partial discharge with  
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Fig. 5.  Block Diagram of Partial 

 

insulation degradation. This makes it possible to 

organize the inference system evaluating 

degradation status from an unknown signal. The 

current wave of a partial discharge, as shown Figure 6 

(d3), is an unexpected discrete impulse wave. This 

wave has information about partial discharges above 

the size limit.   By applying the feature extraction 

process using wavelets, 2 dimensional input data is 

acquired as the count per second and scale value. 

Discrete data is acquired across the discharge and 

breakdown process for a uniform interval. 

Fig. 6. Source and Analyzed Signals 

 

3.2 Design of the Diagnosis Model   
For i-th input variables xn (n=1, 2) and the output 

variable yi, the fuzzy production rule is represented 

as follows: 
iR : if 1x  is 

iA1  and 2x  is 
iA2 ,then 

ii by = , (i= 1, 2, 3, ... , c)      (8) 

Here 
iR is i-th rule, c is number of rules, 1A , 2A are 

triangular fuzzy sets, 
iy
 is i-th consequent and 

ib is 

i-th singleton output.  The max-product composite 

fuzzy inference method is applied for input data 

( )21 , xx
 and crisp, defuzzified model output is 

computed by: 
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Here,, 
)( 11 x

i

Aµ is the membership function for the 

fuzzy set 1A , 
)( 22 x

i

Aµ is membership function for 

fuzzy set 2A ,
iy
 is i-th output, w

i
, 

iw  is 

compatibility of input 
( )21 , xx

to rule
iR .  As shown 

in Figure 7, the membership function for input to the  

Fig. 7. Neuro-Fuzzy Diagnosis Model 

 

fuzzy set uses a triangular membership function. 

The rule consists of membership function values of 

the input variables. Rule fine-tuning uses back 

propagation to adjust the fuzzy variable and 

singleton value in the fuzzy rules using a 

generalized delta rule.  

 

4   Experimental Results 
The current wave from the partial discharge 

experiments has 10000 sample values per group, as 

shown in Table 1 After applying the voltage, from 

the initial partial discharge to final insulation 

breakage, data consist of 19 groups. The value s, in 

Figure 6, is the composite signal obtained through 

the noise reduction process using wavelets. Results 

indicate that the high frequency component is mixed 

over a primary low frequency component at 60Hz. 

The finite pulse current is shown at phase angles of 

90°and 270°.  In this experiment, noise is removed 

using wavelet for negative phase. Using the wavelet 

filter function, the partial discharge occurrence 

count above the threshold, or lower bound of the 

magnitude, and the high frequency component, d3 

(Decamp/ 3 level), are obtained, as shown in Figure 
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6. The occurrence count and the integral value of the 

pulse signal of a partial discharge become attributes 

of feature pattern, as shown in Table 1. This depicts 

 

Table 1 

 
Groups Count Scale 

1  0(0) -7.8099e+003, -7.8113e+003 

2  0(0) -8.6136e+003, -8.6140e+003 

3 11(3) -3.2890e+003,-3.2894e+003 

4 13(3)    -883.3157,-883.5000 

5 17(2)    -296.3443,-342.1870 

6 18(2)    -344.7555,-339.4140 

7 12(1)    -359.0311,-322.1813 

8 18(2)    -261.4078,-292.6427 

9 18(0)    -288.0817,-267.3261 

10 20(0)    -158.4500,-206.5498 

11 27(6)    -186.8032,-175.7643 

12 22(10)      79.5891,78.4305 

13 24(19)     255.5805,254.5124 

14 24(24)     552.6942,551.3547 

15 24(24)     592.5400,567.6947 

16 24(24)     496.9675,579.3758 

17 24(24)     581.9201,588.6491 

18 24(24)     761.0831,763.3684 

19 24(24)     773.7059,772.8384 

 

 

that nonlinear characteristics do not provide a 

smooth pattern. It also reveals the complex 

relationship between insulation degradation and 

partial discharge. 

   Figure 8 shows that inference from the diagnosis 

system is better than the actual measurement for the 

estimation of the progress of insulation degradation. 

This research suggests the applicability of a 

diagnosis system based on the 2D pattern, using the 

magnitude and count of the current wave signal of 

partial discharge and preprocessed by a wavelet 

filter and its improvement over 3D analysis. 

Therefore, a more practical diagnosis system, that 

overcomes the high cost and complexity of phase 

measurement in previous methods, is realized.  

 

4   Conclusion 
In the field of high voltage electrical systems, it is 

difficult to reliably manage the status of insulation 

degradation. There are many problems in applying 

conventional methods that require off line testing 

where power is shut down, production lines are 

halted  and  measuring  devices  must be installed  in 

 

 
 

Fig. 8 The Result of Proposed Diagnosis System  

(∗: Reasoning data, 0:Real data) 
 

the proper positions. In the previous methods, these 

system configurations to measure the many 

variables are complex and expensive.  While some 

research studies have found solutions to these 

problems, using 3D, frequency-analyzing and fractal 

based tree analyzing methods, these methods exhibit 

problems.  A phase variable measurement, where, 

partial discharge is discontinuous in time and the 

range of frequency (2MHz-40MHz) is too broad to 

measure reliably, requires a complex and high cost 

system.  To solve these problems, this research 

proposed a diagnosis system based on 2D pattern 

data and the experimental results show its improved 

performance and usefulness. Further study is 

necessary to overcome the discontinuous nature of 

partial discharge signals and to produce general 

reference patterns for diverse environments. Further 

study that combines the result of this research with 

the method using electromagnetic wave should 

provide more practical systems for commercial 

purpose. 
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