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Abstract: Schema matching plays the central role in many applications that require interoperability between het-
erogeneous data sources. The best way to attain comprehensive understanding of the schema matching problem
is to construct a complete, if possible, problem formulation. Schema matching has been intensively researched
and many matching systems have been developed. However, specifications of the schema matching problem being
solved by these systems do not exist, or if it exists do not take uncertainty problems into account. In this paper,
we propose the use of the fuzzy constraint problem (FCP) as a framework to model and understand the schema
matching problem. In an effort to achieve more generic approach, we first transform the schema matching prob-
lem into a graph matching problem by transforming schemas to be matched into a common model namely rooted
labeled graphs. Then, with the aid of this common model, we formulate the graph matching problem into a fuzzy
constraint problem. By formalizing the schema matching problem as a FCP, we could express it as a combinatorial
problem with soft constraints which enables us dealing with inherent uncertainty in schema matching.
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functions

1 Introduction

The rapid increase of information and communica-
tion technologies has made accessible large amount
of information stored in different application-specific
databases and web sites. The number of different in-
formation sources is rapidly increasing and the prob-
lem of semantic heterogeneities is becoming more and
more severe. Semantic heterogeneity is the ambigu-
ous interpretation of concepts, describing the meaning
of data in heterogenous data sources [18, 22]. Schema
matching plays the central role in solving the problem
of semantic heterogeneities. Schema matching is the
task of identifying semantic correspondences between
elements of two schemas.

Schema matching is a critical and fundamental
step in many data application scenarios [11]: in
data integration, to identify and characterize inter-
schema relationships between multiple (heteroge-
neous) schemas; in data warehousing, to map data
sources to warehouse schema; in E-business, to help
map messages between different XML formats; and
in the semantic web, to establish semantic correspon-
dences between concepts of different websites ontolo-
gies.

A first step in finding an effective and efficient

way to solve any difficult problem is to construct a
complete, possibly formal, problem specification. A
suitable and precise definition of schema matching
is essential for investigating approaches to solve it.
Schema matching has been extensively researched,
and many matching systems have been developed.
Some of these systems are rule-based [4, 11, 13] and
the other are learner-based [10, 5, 6]. However, for-
mal specifications of problems being solved by these
systems do not exist, or are partial. A little work is
done towards schema matching problem formulation.
Some of these works are found in [21, 17]. Hence, to
understand and handle the complexity of the schema
matching problem and to be able to advise an efficient
algorithm to cope with the matching problem, a for-
mal problem specification is required.

In the common rule-based approaches, a graph is
used to describe the state of a modeled system at a
given time, and graph rules are used to describe the
operations on the system’s state. As a consequence
in practice, using graph rules has a worst complex-
ity which is exponential to the size of the graph. Of
course, an algorithm of exponential time complexity
is unacceptable for serious system implementation. In
general, to achieve acceptable performance it is in-
evitable to consequently exploit the special properties
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of both schemas to be matched. Beside that, there is
a striking commonality in all rule-based approaches;
they are all based on backtracking paradigm. Know-
ing that the overwhelming majority of theoretical as
well as empirical studies on the optimization of back-
tracking algorithms is based on the context of con-
straint problem (CP), it is near to hand to open this
knowledge base for schema matching algorithms by
reformulating the problem as a CP [20, 12].

Due to the complexity of schema matching, it
was performed manually by a human observer. How-
ever, manual reconciliation tends to be slow and in-
efficient process especially in dynamic environments
such as the semantic web. Therefore, the need for au-
tomatic semantic schema matching has become essen-
tial. Consequently, many schema matching systems
have been developed for automating the process, such
as Cupid [11], COMA [4], and LSD [5, 6]. Manual
semantic matching overcomes mismatches which ex-
ists in element names and also differentiates between
differences of domains. Hence, we could assume that
manual matching is a perfect process. In the other
hand, automatic matching may carry with it a degree
of uncertainty, as it is based on syntactic, rather than
semantic, means. Therefore, we should model and
represent uncertainty in the schema matching process.

In this paper, we propose the use of fuzzy con-
straint problem (FCP), one specific type of the con-
straint problem [8], to formulate the schema match-
ing problem. However, the schemas to be matched
are represented in different data models. There-
fore, we first transform these schemas into a common
data model called rooted labeled graphs. Then re-
formulate the graph matching problem as a constraint
problem. The main benefit of this approach is that
we gain direct access to the rich research findings in
the CP area; instead of inventing new algorithms for
graph matching from scratch. Another important ad-
vantage is that the actual algorithm solution becomes
independent of the concrete graph model, allowing us
to change the model without affecting the algorithm
by introducing a new level of abstraction. Moreover,
formalizing the schema matching problem as a FCP
facilitates handling inherent uncertainty in the schema
matching process.

The rest of the paper is organized as follows: Sec-
tion 2 introduces necessary preliminaries concerning
graphs and constraint programming. Our framework
to unify schema matching is presented in Sect. 3
to show the scope of this paper and presents how to
transform schemas to be matched into schema graphs.
Section 4 shows how to formulate the schema match-
ing problem as a constraint problem. The conclud-
ing remarks and ongoing future work are presented in
Sect. 5.

2 Preliminaries

This paper is based mainly on two existing bodies of
research, namely graph theory [2] and constraint pro-
gramming [20, 12].

2.1 Graph Model

A schema is the description of the structure and the
content of a model and consists of a set of related
elements such as tables, columns, classes, or XML
elements and attributes. There are many kinds of
data models, such as relational model, object-oriented
model, ER model, XML schema, etc. By schema
structure and schema content, we mean its schema-
based properties and its instance-based properties, re-
spectively. In this subsection we present formally
rooted (multi-)labeled directed graphs used to repre-
sent schemas to be matched as the internal common
model.

A rooted labeled graph is a directed graph such
that nodes and edges are associated with labels, and
in which one node is labeled in a special way to dis-
tinguish it from the graph’s other nodes. This special
node is called the root of the graph. Without loss of
generality, we shall assume that every node and edge
is associated with at least one label: if some nodes
(resp. edges) have no label, one can add an extra
anonymous label that is associated with every node
(resp. edge). More formally, we can define the la-
beled graph as follows:

Definition 1: (Rooted Labeled Graph) A rooted la-
beled graph G is a 6-tuple G = (NG, EG, LabG, src,
tar, l) where:

• NG = {nroot, n2, ..., nn} is a finite set of nodes,
each of them is uniquely identified by an ob-
ject identifier (OID), where nroot is the graph
root and satisfies the condition parten(nroot) =
NULL.

• EG = {(ni, nj)|ni, nj ∈ NG} is a finite set of
edges, each edge represents the relationship be-
tween two nodes.

• LabG ={ LabNG, LabEG } is a finite set of node
labels LabNG , and a finite set of edge labels
LabEG. These labels are strings for describing
the properties (features) of nodes and edges.

• src and tar: EG 7→ NG are two mappings
(source and target), assigning a source and a tar-
get node to each edge (i.e. if e = (ni, nj) then
src(e) = ni and tar(e) = nj).
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• l : NG ∪EG 7→ LabG is a mapping label assign-
ing a label from the given LabG to each node and
each edge.

• |NG| = n is the graph size.

Now that we have defined a concrete graph model,
in the following subsection we present basics of con-
straint programming

2.2 Constraint Programming

A lot of problems in computer science, most notably
in artificial intelligence, can be interpreted as spe-
cial cases of constraint problems. Semantic schema
matching is also an intelligent process which aims at
mimicking the behavior of human in finding semantic
correspondences between elements of two schemas.
Therefore, the constraint programming is a suitable
scheme to interpret and understand the schema match-
ing problem.

Constraint programming is a generic framework
for declarative description and effective solving for
large, particulary combinatorial, problems. Not only
it is based on a strong theoretical foundation but also
it is attracting widespread commercial interest as well,
in particular, in areas of modeling heterogeneous op-
timization and satisfaction problems. There are two
branches of constraint programming, namely con-
straint satisfaction and constraint solving. We, here,
concentrate only on constraint satisfaction problem
(CSP) and present definitions for CSPs, constraints,
and solution for the CSPs.

Definition 2: (Constraint Satisfaction Problem) A
constraint satisfaction problem P is defined by a 3-
tuple P=(X,D,C) where,

• X = {x1, x2, ..., xn} is a finite set of variables,

• D = {D1, D2, ..., Dn} is a collection of finite
domains. Each domain Di is the set containing
the possible values for the corresponding vari-
able xi ∈ X ,

• C = {C1, C2, ..., Cm} is a set of constraints on
the variables of X.

Definition 3: (Constraint) A constraint Cs on a set
of variables S = {x1, x2, ...xr} is a relation on the
product of these variables’ domains: Cs ⊆ D1× ...×
Dr → {0, 1}. The number r of variables a constraint
is defined upon is called arity of the constraint.

A constraint comprises the values a variable is al-
lowed to take with respect to other variables. The sim-
plest type is the unary constraint, which restricts the

value of a single variable. Of special interest are the
constraints of arity two, called binary constraints. A
constraint that is defined on more than two variables
is called a global constraint.

Solving a CSP is finding assignments of values
from the respective domains to the variables so that
all constraints are satisfied.

Definition 4: (Solution of a CSP) An assignment Λ
is a solution of a CSP if is satisfies all the constraints
of the problem, where the assignment Λ denotes an
assignment of each variable xi with the corresponding
value ai and xi ∈ X and ai ∈ Di.

In the schema matching field, we do not need to
find any solution but the best solution. The quality of
solution is usually measured by an application depen-
dent function called objective function. The goal is to
find such solution that satisfies all the constraints and
minimize or maximize the objective function respec-
tively. Such problems are referred to as Constraint
Optimization Problems (COP).

Definition 5: (Constraint Optimization Problem) A
constraint optimization problem Q is defined by cou-
ple Q =(P,g) such that P is a CSP and g : D1 × ... ×
Dn → [0, 1] is an objective function that maps each
solution tuple into a value.

While powerful, both CSP and COP present some
limitations. In particular, all constraints are consid-
ered mandatory. In many real problems, such as
dealing with uncertainty, often appear constraints that
could be violated in solutions without causing such
solutions to be unacceptable. If these constraints are
treated as mandatory, this often causes problems to be
unsolved. If these constraints are ignored, solutions of
bad quality are found. This is a motivation to extend
the CSP schema and make use of soft constraints. We
differentiate between different types of constraints. A
constraint is crisp when it is either completely satis-
fied or completely violated. A constraint is a fuzzy
when it is allows for intermediate satisfaction degrees
[14, 8].

Definition 6: (Fuzzy Constraint) A fuzzy constraint
Cµ is represented by the fuzzy relation Rf , defined by
µR :

∏
xi∈var(C) Di → [0, 1] where µR is the mem-

bership function indicating to what extent a tuple v
satisfies Cµ,

• µR(v) = 1 means v totaly satisfies Cµ,

• µR(v) = 0 means v totaly violates Cµ,

• 0 < µR(v) < 1 means v partially satisfies Cµ.
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Obviously, crisp constraints are included in the model,
involving values 0 and 1 only.

Definition 7: (Fuzzy Constraint Optimization Prob-
lem) A fuzzy constraint optimization problem (FCOP)
is a 4-tuple Qµ= (X, D, Cµ, g) where X is a list of
variables, D is a list of domains of possible values for
the variables, Cµ is a list of fuzzy constraints each of
them referring to some of the given variables, and g is
an objective function to be optimized.

The following examples illustrate the above defi-
nitions.

Example 8: (CSP: Map Coloring) We want to color
the regions of a map in a way that no two adjacent re-
gions have the same color. The actual problem is that
only a certain limited number of colors is available.
Let’s we have four regions and only three colors. We
now formulate this problem as CSP P=(X,D, C) where

• X = {x1, x2, x3, x4} represents the four re-
gions,

• D = {D1, D2, D3, D4} represents the
domains of the variables such that
D1 = D2 = D3 = D4 = {red, green, blue},
and

• C = {C(x1,x2), C(x1,x3), C(x1,x4), C(x2,x3), C(x2,x4), C(x3,x4)}
represents the constraints which should be satis-
fied such that
C(x1,x2) = {(v1, v2) ∈ D1 ×D2|v1 6= v2}. The
other constraints are defined in the same way.

Example 9: (FCOP) Consider we have three vari-
ables each has two available values a and b. It is re-
quired to find the best 3-character word subjected to
the following fuzzy constraints
Cµ(x1,x2) = {(v1, v2) ∈ D1 × D2|µR(a, a) =
0, µR(b, b) = 0.7, µR(a, b) = 1, µR(b, a) = .5}
, Cµ(x2,x3) = {(v2, v3) ∈ D2 × D3|µR(a, a) =
0.3, µR(b, b) = 1, µR(a, b) = 0.1, µR(b, a) = 1}.
This problem can be formulated as FCOP Qµ= (X, D,
Cµ, g) where:

• X = {x1, x2, x3} represents the three charac-
ters,

• D = {D1, D2, D3} represents the doamins of
the variables such that D1 = D2 = D3 = {a, b}

• Cµ = {Cµ(x1,x2), Cµ(x2,x3)} represents the fuzzy
constraints defined above, and

• g is the objective function to detemine the best
solution

Figure 1: Matching Process Phases

The mentioned examples are used to explain how
to formulate different problems from different do-
mains as constraint problems. In the following sec-
tion we shed the light on our unified schema matching
framework to determine the scope of schema match-
ing understanding.

3 A Unified Schema Matching
Framework

Each of the existing schema matching systems deals
with the schema matching problem from its point of
view, but we need a generic framework that unifies
the solution of this intricate problem independent on
the domain of schemas to be matched and indepen-
dent on the model representations. Therefore, we
suggest the following general phases to address the
schema matching problem. Figure 1 shows these
phases with the main scope of this paper. The four
different phases are: importing the schemas to be
matched; TransMat Phase, identifying the elements to
be matched; Pr-matching Phase, applying the match-
ing algorithm; Matching Phase, and exporting the
match result; MapTrans Phase.

In the following subsection we introduce a frame-
work for defining different data models and how to
transform them into schema graphs. This part follows
the same procedure found in [21] to show that dif-
ferent data models could be represented by schema
graphs. More details about our framework is found in
[1]

3.1 Schema Graph

To make the matching process more generic process,
the schemas to be matched should be represented
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internally by a common representation. This uni-
form representation reduces the complexity of match-
ing process by not having to cope with different
schema representations. By developing such import
tools, schema match implementation can be applied
to schemas of any data model such as SQL, XML,
UML, and etc. Therefore, the first step in most schema
matching approaches is to transform the schemas to
be matched to a common model in order to apply-
ing the matching algorithm. Most of these approaches
choose graph data structure as the internal represen-
tation [4, 3, 7, 11, 13, 16]. The choice of graph as
an internal representation for schemas to be matched
has many motivations. First, graphs are well-known
data structure and have its algorithms and implemen-
tations. Second, by using the graph as a common data
model, the schema matching problem is transformed
into another standard problem graph matching prob-
lem. We also make use of rooted labeled graphs as the
internal model for the schemas to be matched. We call
this phase as TransMat; Transformation for Matching
process.

In general, to represent the schemas and data in-
stances, starting from the root, the schema is parti-
tioned into relations (elements) and further down into
attributes and data instances. In particular, to repre-
sent relational schemas, XML schemas, etc. as rooted
labeled graphs, independently of the specific source
format, we benefit from the rules found in [21, 15, 9].
These rules are:

• Every prepared matching object in a schema such
as schema, relations, elements, attributes etc. is
represented by a node in the schema graph, such
that the schema itself is represented by the root
node. Let schema S consists of m elements
(elem), then
∀elem ∈ S ∃n ∈ NG and S 7→ nroot

• The features of the prepared matching object are
represented by node labels LabNG. Let fea-
tures (featS) are the properties set of an element
(elem), then

∀feat ∈ featS ∃Lab ∈ LabNG

• The relationship between two prepared matching
objects is represented by an edge of the schema
graph. Let the relationships between schema el-
ements are (relS), then

∀rel ∈ relS ∃e(ni, nj) ∈ EG such that
src(e) = ni ∈ NG and tar(e) = nj ∈ NG

• The properties of the relationship between pre-
pared objects are represented by edge labels
LabEG, then, ∀rfeat ∈ rfeatS ∃Lab ∈ LabEG

Figure 2: Two Relational Schemas

Figure 3: Schema Graphs of Two Relational
Schemas(without labels)

Example 10: (Relational Database Schemas) Con-
sider schemas S and T depicted in Fig. 2 (from
[13]). The elements of S and T are tables and at-
tributes. From Fig.1 and applying the above encod-
ing rules, we obtain the schema graphs SG1 and SG2.
Therefore, two relational schemas are transformed
into schema graphs, thus Schema S and Schema T are
represented by SG1 and SG2 respectively, such that
SG1 = (NGS , EGS , LabGS , srcS , tarS , lS) where

• NGS = {n1S , n2S , n3S , n4S , n5S , n6S}

• EGS = {e1−2, e2−3, e2−4, e2−5, e2−6}

• LabGS = LabNS ∪ LabES =
{name, type, datatype} ∪ {part − of},
Table 1 represents these labels.

• srcS , tarS , lS are mappings such that
srcS(e1−2) = n1S , tarS(e2−3) = n3S and
lS(e1−2) = part− of

Figures 3 shows only the nodes and edges of the
schema graphs (SG2 can be defined similarly).

Example 11: (XML Schemas) The relational data
model does not capture all the features of semi-
structured or unstructured data. Semi-structured data
does not possess regular structure as well as missing
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Table 1: The Labels of two Schema Graph Nodes

OID Labels of Schema Graph SG1 Labels of Schema Graph SG2
name data type type name data type type

1 Schema S - schema Schema T - schema
2 Personnel - table Employee - table
3 Pno int attribute Department - table
4 Pname string attribute EmpNo int attribute
5 Dept string attribute EmpName varchar(20) attribute
6 Born date attribute DeptNo int attribute
7 Salary int attribute
8 BirthDate date attribute
9 DeptNo int attribute
10 DeptName varchar(30) attribute

Figure 4: Two XML Schemas

Figure 5: Schema Graphs of Two XML
Schemas(without labels)

or duplicated fields are allowed. Typical examples are
HTML and XML.

This example that we discuss illustrate how our
unified schema matching framework copes with dif-
ferent choices of the models to be matched. Now two
XML schemas in Fig. 4 (from [21]). The schemas
are specified using the XML language deployed on the
website biztalk.org designed for electronic documents
used in e-business. The schema graphs (without la-
bels) of these schemas are shown in Fig.5. The labels
of nodes and edges are the same as Example 10.

Examples 10 and 11 illustrate that using Trans-
Mat phase aims at matching different schema models.

The matching algorithm (Matching Phase) does not
have to deal with a large number of different mod-
els. The matching algorithm only deals with the in-
ternal representation. So far, recent schema matching
systems directly determine semantic correspondences
between two schemas elements as a graph matching.
In this paper, we extend the internal representation,
schema graphs, and reformulate the graph matching
problem as a constraint problem.

4 Schema Matching as a FCOP

The goal of schema matching is to identify the se-
mantic correspondences between elements of two
schemas. We will illustrate the process of transform-
ing the schema matching problem into a FCOP. We
first describe the schema matching problem as a graph
matching problem and then reformulate it as a con-
straint problem.

4.1 Schema Matching as Graph Matching

The schemas to be matched are transformed into
rooted labeled graphs and, hence, the schema match-
ing problem is converted into graph matching. Two
types of graph matching exist isomorphism and homo-
morphism. In general, a match of one graph into an-
other is given by a graph morphism, which is a map-
ping of one graph’s object sets into the other’s, with
some restrictions to preserve the graph’s structure and
its typing information.

Definition 12: (Graph Morphism) A graph mor-
phism φ : SG1 → SG2 between two schema
graphs SG1 = (NGS , EGS , LabGS , srcS , tarS , lS)
and SG2 = (NGT , EGT , LabGT , srcT , tarT , lT ) is
a pair of mappings φ = (φN , φE) such that φN :
NGS → NGT (φN is a node mapping function) and
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φE : EGS → EGT (φE is an edge mapping function)
and the following restrictions apply:

1. ∀n ∈ NGS ∃ lS(n) = lT (φN (n))

2. ∀e ∈ EGS ∃ lS(e) = lT (φE(e))

3. ∀e ∈ EGS ∃ a path p′ ∈ NGT × EGT such that
p′ = φE(e) and
φN (srcS(e)) = srcT (φE(e)) ∧ φN (tarS(e)) =
tarT (φE(e)).

The first two condition preserve both nodes and edges
labeling information, while the third condition pre-
serves the structure of the graph.

The graph matching is an isomorphic matching
problem when |NGS | = |NGT | otherwise it is homo-
morphic. Obviously, the schema matching problem is
homomorphic problem.

Definition 12 reflects only one type of match-
ing cardinality called individual matching (one-to-
one). Individual matching implies that one graph ob-
ject from the first schema graph is associated with
one graph object from the other schema graph. The
other type of matching cardinality is complex match-
ing which implies one (or a set) graph object(s) of one
schema may be associated with a set of graph objects
of the other schema.

Example 13: For the two relational database
schemas depicted in Fig. 2 and its associated schema
graphs shown in Fig. 3, the schema matching prob-
lem between schema S and schema T is converted
into a homomorphic graph matching problem between
schema graph SG1 and schema graph SG2.

Graph matching is considered to be one of the
most complex problems in computer science. Its com-
plexity is due to two major problems. The first prob-
lem is the computational complexity of graph match-
ing. The time required by backtracking in a search
tree algorithms may in the worst case become expo-
nential in the size of the graph. The second prob-
lem is the fact that all of the algorithms for graph
matching mentioned so far can only be applied to two
graphs at a time. Therefore, if there is more than two
schemas that must be matched, then the conventional
graph matching algorithms must be applied to each
pair sequentially. For applications dealing with large
databases, this may be prohibitive. Graph homomor-
phisms have been proven to be NP-complete problem
[19]. Hence, choosing graph matching as platform to
solve the schema matching problem may be effective
process but inefficient. Therefore, we propose trans-
forming graph homomorphism into a FCOP.

Now that we have defined a graph model and its
homomorphism, let us consider how to construct a
FCOP out of a given graph matching problem.

4.2 Graph Matching as a FCOP

In the schema matching problem, we are trying to
find a mapping between the elements of two schemas.
Multiple conditions should be applied to make these
mappings valid solutions to the matching problem,
and some objective functions are to be optimized to
select the best mappings among matching result. The
analogy to constraint problem is quite obvious: here
we make a mapping between two sets, namely be-
tween a set of variables and a set of domains, where
some conditions should be satisfied. So basically,
what we have to do to obtain an equivalent constraint
problem CP for a given schema matching problem
(knowing that schemas to be matched are transformed
into schema graphs) are:

1. take the objects of one schema graph to be
matched as the CP’s set of variables,

2. take the objects of the other schema graph to be
matched as the variables’ domain,

3. find a proper translation of the conditions that
apply to a schema matching into a set of con-
straints, and

4. form the objective functions to be optimized.

We have defined the schema matching problem as
a graph matching homomorphism φ. We now proceed
by formalizing the problem φ as a FCOP problem
Qµ = (X, D,Cµ, g). To construct a FCOP out of this
problem, we follow the above rules. Through these
rules, we take the two relational database schemas
shown in Fig. 2 and its associated schema graphs
shown in Fig. 3 as an example, taking into account
that |NGS |(= 6) < |NGT |(= 10)

• The set of variables X is given by
X = NGS ∪EGS where the variables from NGS

are called node variables XN and from EGE are
called edge variables XE

X = XN ∪ XE =
{xn1, xn2, xn3, xn4, xn5, xn6} ∪
{xe12, xe23, xe24, xe25, xe26} =
{xn1, xn2, xn3, xn4, xn5, xn6, xe12, xe23, xe24, xe25, xe26}

• The set of domain D is given by
D = NGT ∪ EGT , where the domains
from NGT are called node domains DN and
from EGT are called edge domains DE

D = DN ∪DE

= {Dn1, Dn2, Dn3, Dn4, Dn5, Dn6} ∪
{De1−2 , De2−3 , De2−4 , De2−5 , De2−6}
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= {Dn1, Dn2, Dn3, Dn4, Dn5, Dn6, De1−2 ,
De2−3 , De2−4 , De2−5 , De2−6}
where Dn1 = Dn2 = Dn3 = Dn4 = Dn5 =
Dn6 = {n1T , n2T , n3T , n4T , n5T ,
n6T , n7T , n8T , n9T , n10T } (i.e.node domain
contains all the second schema graph nodes) and
De1−2 = De2−3 = De2−4 = De2−5 = De2−6 =
{e1−2T , e1−3T , e2−4T , ...., p1−2−4T , ...} (i.e.
edge domain contains all the available edges and
paths in the second schema graph)(the edge e1−2

reads the edge extends between the two nodes
n1 and n2 such that e1−2 = e(n1, n2)).

• Still missing in our FCOP are the proper set of
constraints to enforce matching properties on the
solutions and a set of objective functions to de-
termine a measure of how good a solution is.

In the following subsections, we demonstrate how to
construct both constraints and objective functions to
obtain a complete problem definition.

4.3 Constraints Construction

For constraints to be of most use, they should re-
flect the goals of schema matching. Schema match-
ing based only on schema element properties has been
attempted. However, it does not provide any facility
to optimize matching. Furthermore, additional con-
straint information, such as semantic relationships and
other domain constrains is not included, and schemas
may not completely capture the semantics of data they
describe. Therefore, in order to improve the cor-
rectness of matching, additional information should
be included. In this paper, we are concerned with
both syntactic and semantic matching. Therefore, we
could classify constraints that should be incorporated
in the CP model into: syntactic constraints and se-
mantic constraints. In the following, we consider only
the constraints construction while the fuzzy relations
of fuzzy constraint are not consider since it depends
on the application domain. For example, as shown
below, domain constraints are crisp constraints, i.e.
µC(v) = 1, while the structural constraints are soft
constraints with different degree of satisfaction.

Syntactic Constraints

1. Domain Constraint: It states that a node variable
must be assigned a value (or a set of values) from
a node domain, and an edge variable must be as-
signed a value from the edge domain. That is
∀xni ∈ XN and xej ∈ XE∃ a unary constraint
Cdom

µ(xni)
and Cdom

µ(xei)
ensuring domain consistency

of the match, where

Cdom
µ(xni)

= {di ∈ DNi}
Cdom

µ(xei)
= {di ∈ DEi}

2. Structural Constraints: There are many structural
relationships between nodes in schema graphs
such as:

• Edge Constraint: It states that if an edge
exists between two variable nodes, then an
edge (or path) should exist between their
corresponding images. That is, ∀xei ∈ XE

and its source and target nodes are xns and
xnt ∃ two binary constraints Csrc

µ(xei,xns)
,

Ctar
µ(xei,xnt)

representing the structural be-
havior of matching, where:
Csrc

µ(xei,xns)
= {(di, dj) ∈ DE ×

DN |src(di) = dj}
Ctar

(xei,xnt)
= {(di, dj) ∈ DE ×

DN |tar(di) = dj}
• Parent Constraint: ∀ two variable nodes

xni and xnj ∈ XN ∃ a binary constraint
Cparent

µ(xni,xnj)
representing the structural be-

havior of parent relationship, where
Cparent

µ(xni,xnj)
= {(di, dj) ∈ DN ×

DN |∃e(di, dj)s.t.src(e) = di}
• Child Constraint: ∀ two variable nodes

xni and xnj ∈ XN ∃ a binary constraint
Cchild

µ(xni,xnj)
representing the structural be-

havior of child relationship, where
Cchild

µ(xni,xnj)
= {(di, dj) ∈ DN ×

DN |∃e(di, dj)s.t.tar(e) = di}
• Sibling Constraint: ∀ two variable nodes

xni and xnj ∈ XN ∃ a binary constraint
Csibl

µ(xni,xnj)
representing the structural be-

havior of parent relationship, where
Csibl

µ(xni,xnj)
= {(di, dj) ∈

DN × DN |∃dns.t.parent(dn, di) ∧
paren(dn, dj)}

Semantic Constraints

1. Labeled Constraints: ∀xi ∈ X∃ a unary con-
straint CLab

µ(xi)
ensuring the semantics of the pred-

icates in the schema such that:
if xi ∈ XN : CLab

µ(xi)
= {dj ∈ DN |lS(xi) =

lT (dj)}
if xi ∈ XE : CLab

µ(xi)
= {dj ∈ DE |lS(xi) =

lT (dj)}
The above syntactic and semantic constraints are

by no means the contextual relationships between el-
ements. Other kinds of domain knowledge can also
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be represented through constraints. Constraints re-
strict the search space for the matching problem so
may benefit the efficiency of the search process. On
the other hand, if too complex, constraints introduce
additional computational complexity to the problem
solver.

4.4 Objective Function Construction

The objective function is the function to be optimized
depending on the object parameters (also referred to
as search space parameters). The objective function
constitutes the implementation of the problem to be
solved. The input parameters are the object param-
eters. The output is the objective value representing
the evaluation/quality of the individual. In the schema
matching problem, the objective function simulates
human reasoning on similarity between schema graph
objects. Most of the recent approaches are based on
the usage of heuristics called clues.

A clue is the methodology of how to compute se-
mantic similarity between schema graph objects based
on their features. Thus, a clue is a function whose in-
puts are the features of schema graph objects and its
output is the semantic similarity. Obviously, each clue
influences schema matching performance. If a clue
produces a high precision (recall) matching result, it
would be improve schema matching effectiveness and
if a clue needs expensive computations, it would re-
grade schema matching efficiency. Therefore, the de-
sign of clues is an intractable process.

Definition 14: (Clue Function) A clue function fc
is a function which determines the semantic similarity
between schema graph objects based on their features.
fc : ic 7→ [0, 1] s.t. ic ⊆ D.
The clue function fc can exploit different methods
and techniques such as arithmetic expression, string
functions, iterative techniques, machine learning ap-
proaches, ect. The input of fc makes use of schema
graph object features including labels of nodes LabN

and labels of edges LabE . While, the output of this
fuction can be quantified in different quantities for ex-
ample numerical, logical. But the most used is the
numerical which is normalized to the interval [0,1].

In order to get an objective function from differ-
ent used clues functions, those clues function have to
be composed. Many approaches to clue composition
exist. In general, any approach that transforms inputs
into outputs can be used in semantic similarity.

5 Summary and Future Work

Schema matching is a fundamental process in many
domains dealing with shared data such as data inte-
gration, data warehouse, E-commerce, semantic query
processing, and the web semantics. Matching solu-
tions were developed using different kind of heuris-
tics, but usually without prior formal definition of the
problem they are solving. Although many match-
ing systems have been developed and different ap-
proaches are proposed to solve the schema matching
problem, but no complete work to address the formu-
lation problem. Schema matching research mostly fo-
cuses on how well schema matching systems recog-
nize corresponding schema elements. On the other
hand, not enough research has been done on formal
basics of the schema matching problem.

In this paper, we have introduced a formal defi-
nition for the schema matching problem. This defi-
nition is based on transforming the schema matching
problem into graph matching by representing schemas
to be matched as schema graphs. Instead of solving
the graph matching problem which has been proven
to be NP-complete problem, we reformulate it as a
constraint problem. Therefore, the schema match-
ing problem can be understood as searching values
for variables from finite domains when the given con-
straints are (partially) satisfied and an objective func-
tion is optimal. We have identified two types of con-
straints syntactic and semantic to ensure match se-
mantics. We also shed lights on how to construct ob-
jective functions.

The main benefit of this approach is that we gain
direct access to the rich research findings in the CP
area; instead of inventing new algorithms for graph
matching from scratch. Another important advantage
is that the actual algorithm solution becomes inde-
pendent of the concrete graph model, allowing us to
change the model without affecting the algorithm by
introducing a new level of abstraction.

Understanding schema matching problem is con-
sidered the first step towards an effective and efficient
solution for the problem. In our ongoing work, we
will exploit constraint solver algorithms to reach to
our goal.
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