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Abstract: - The paper describes some initial experiments performed recently to investigate the limits of 
performance of an optoelectronic motion analysis system for measuring the flight characteristics of a spinning 
football. The football was projected with a given speed and spin using a special ball projection machine. Six 
retroreflective patches applied to the surface of the ball were used to reflect light back to the twelve digital 
cameras employed in this study. The measurement yielded time histories for all the following parameters, the 
spin angular momentum vector, the ball velocity vector and the displacement vector referred to rectangular 
x,y,z axes and at a sampling rate of 500Hz. The ball radius was computed continuously throughout the trials as 
a check and yielded a mean value of 106.7mm with a standard deviation of 0.9mm.  
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1   Introduction 
Newton (1642-1727) realised that a spinning tennis ball 
deviates in flight and suggested that the surrounding air 
was responsible for the effect. Robins (1707-1751) 
explained the deflection of musket balls in terms of their 
spin. [1] Magnus (1802-70) showed that a rotating 
cylinder experienced a sideways force when mounted 
perpendicularly to a flow of air and the effect is now 
called the Magnus effect or sometimes the Magnus-
Robins effect. [2] Prior to the 20th century, the 
explanation for the effect was that spinning balls carried 
some air around with them in the direction of spin. This 
means that the flow velocity on the side of the ball 
moving against (with) the airflow is decreased (increased) 
and Bernoulli’s principle indicates that the pressure on 
that side of the ball would be increased (decreased). This 
pressure imbalance would lead to a force at right angles to 
both the spin axis and the velocity of the ball. 

Now, however, it is understood that there is a thin 
boundary layer around the surface of the ball. At the 
surface of the ball, the molecules of air are held stationary 
so that the flow velocity relative to the surface is zero. 
Further away from the ball, the air flow is faster and so 
there is a viscous force caused by the velocity gradient 
existing in the air layers surrounding the ball. This 
viscous region contracts towards the ball itself as the 
velocity of the ball through the air is increased and 
outside this layer viscosity can be neglected. The drag on 
the football is determined by the behaviour of this 
boundary layer. As the air flows around the ball, it must 
experience an acceleration as it diverts around the ball 
and then decelerates again as the air departs at the rear of 

the ball. The viscosity in the boundary layer slows the air 
down and, eventually, at some point towards the rear of 
the ball, the flow separates from the surface. This means 
that an eddy can be created in the air flow at the rear of 
the ball. The air flow beyond the separation is irregular. 
Turbulent eddies form in a wake behind the ball and the 
kinetic energy in these eddies is derived from the slowing 
of the ball. 

With a spinning football, on the side of the ball moving 
with the flow the viscous force carries the air farther 
around the ball before the flow separates. On the side of 
the ball moving against the flow the air is slowed more 
quickly and separation occurs closer to the front of the 
ball. The result of this is that the air leaving the ball is 
deflected sideways as shown in Figure 1. 

 

 

Figure 1. The different separation points on the two sides 
of a spinning football lead to a deflected airstream. 
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The sideways component of the airflow carries 
momentum in that direction, and since momentum is 
conserved, the ball must recoil with an equal but opposite 
momentum. This is the Magnus effect. The magnitude of 
the Magnus force can be written as 

vAaCF sM ωρ2
1=     (1) 

where ρ is the density of air, A is the cross-sectional area 
of the ball, ω is the angular velocity, v is the velocity of 
the ball, a is its radius and Cs is an experimentally 
determined coefficient. Alternatively, the Magnus force 
can be written in terms of a lift coefficient CL as 
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This implies that the coefficients as defined here are 
related by 
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The spin on a football can be used in a direct free kick to 
accomplish two objectives: 

(a) to swerve the ball around a defensive wall of 
opposing players and 
(b) to deceive the opposing players, particularly the 
goalkeeper, that the ball is directed away from the goal 
when in fact it will curve in flight and finish up on target. 
Wesson has produced a good account of the science of 
soccer, which includes a treatment of the banana kick, the 
Magnus effect and producing targeted flight with spin. [6] 
Assuming that the lateral force on the ball is constant, the 
ball’s lateral deflection D at time t is proportional to t2. 
Since the forward distance travelled by the ball is x = vt, 
the lateral displacement is proportional to x2 and the 
overall trajectory is of the form of a parabola. Wesson has 
proposed that the deflection D after a flight of length L is 
given by 
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assuming that the spin rate of the ball is constant, where 
Nrots is the number of rotations completed by the ball 
during its flight. [5] In the absence of any data taken on 
footballs, Wesson estimates the approximate value of the 
constant Cs to be about 0.5. 

The influence of spin on a football has not received a 
great deal of experimental investigation until recently. 
Bray and Kerwin have used two digital video cameras and 
a DLT procedure to model the flight of a football in a 
realistic free kick situation. [3] Drag coefficients were 
measured as 0.25 to 0.30 and lift coefficients 0.23 to 0.29 
with a mean ball velocity of 22.3 m.s–1, although in this 
study neither the spin rate or the orientation of the spin 
axis was measured. Carré et al have obtained drag and lift 
coefficients for a football projected with a kicking 
machine such that the spin axis was horizontal.[4] It was 
found that the amount of drag and lift increased with 

imparted spin for tests carried out with the same launch 
velocity. For balls projected at 18 m.s–1, the lift 
coefficient increased from 0.07 to 0.20 approximately as 
the imparted spin rose from 5 to 50 rad.s–1. Carré et al 
have also shown that the seams on a football are of 
importance in determining the aerodynamic forces.[5] 
Recently, some work has been done on an image 
recognition system for measuring soccer ball spin 
characteristics. [7] 

 

2   Problem Formulation 
The motion analysis system (Vicon MX, Vicon, 

Oxford, UK) is able to record the positions of a reflective 
marker at intervals of 1/500 second. By means of 12 
cameras, it is possible to keep a marker in view for most 
of the time. The object of the investigation is to determine 
the position and velocity of the ball, together with its spin, 
in magnitude and direction, and follow their variation 
with time. To avoid interfering with the construction or 
the dynamics of the ball, the markers will necessarily 
follow the curvature of the surface. If there are n markers, 
then the data recorded will consist of 3n coordinates: 
x1(t), y1(t), z1(t), … xn(t), yn(t), zn(t), 
for discrete values of t, separated by δt = 1/500 s. 
A symmetrical arrangement of markers should ensure that 
the centre of the ball has the coordinates: 
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From these quantities, the velocity and acceleration of the 
ball can be determined by suitable polynomial fitting to 
small groups of points. 
The position of the marker i relative to the centre of the 
ball is given by a vector ri(t) with components 
Xi(t) = xi(t) – xc(t),   Yi(t) = yi(t) – yc(t),  
  Zi(t) = zi(t) – zc(t). (6) 
Squaring and summing these should give the square of the 
radius of the ball, R. The markers are of finite size and 
curvature, and the analysis system is designed to report 
coordinate positions at the centre of spherical markers. 
Consequently the recorded positions are some distance 
inside the ball, and the radius calculated in this way will 
be less than the true radius by the order of 1 – 2 cm. The 
calculated radius is useful, however, because its 
constancy can be used as a check on the quality of the 
data. The velocity of marker i relative to the centre is the 

vector )(t
i

r� , with components: 

ui(t) = dXi(t)/dt,   vi(t) = dYi(t)/dt,   wi(t) = dZi(t)/dt,   (7) 
these quantities being evaluated by differentiating 
polynomial fits to the data. 
Consider the vector product 

)()()( ttt
iii

rrΩ �×= . (8) 

If ri is divided into two components, ai parallel with the 
spin axis and bi perpendicular to the axis, then both of 

these components are perpendicular to )(t
i

r�  so that ΩΩΩΩi 

will have a component ai(t) )(t
i

r�  perpendicular to the 
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axis, and bi(t) )(t
i

r�  parallel with it. The parallel 

component is equal to bi
2ω, where ω is the spin. In 

practice, resolving r along the axis is not possible, since 
the direction of the axis has not yet been found. If a 
symmetrical distribution of markers has been used, 

however, then in the vector sum ΣΩΩΩΩi, the perpendicular 
components will cancel out, leaving only the parallel 
components. The value of the sum is then 

ωω Ib
ii
=∑=∑

2
Ω , (9) 

where I is the moment of inertia of the set of markers 
about the axis (strictly, the moment of inertia of a set of 
unit masses placed at these positions). 
 For this to be a practical method of determining 
the spin, the arrangement of markers must have the 
property of possessing the same moment of inertia about 
any axis. This leads to the mathematical question of what 
arrangement of points will have this property. Clearly, it 
is not possible to arrange only one or two points in this 
way. Three points placed 90° apart would have this 
property, but do not have sufficient symmetry to allow the 
centre of the ball to be computed from equation (5). Four 
points placed at the corners of a regular tetrahedron, 
however, should have sufficient symmetry. Checking this 
arrangement carefully reveals that 
I = 8/3R

2,  (10) 
when evaluated about any axis. 
A tetrahedral arrangement is therefore the minimum 
configuration. The design of a football makes it relatively 
easy to locate a tetrahedral set of points. In the design 
consisting of 12 pentagons and 20 hexagons, markers may 
be placed at the centres of four of the hexagons. In the 
older 18-panel design with cubic symmetry, four of the 
corners of the cube will have the correct relationship. 
 There may be advantages in acquiring redundant 
information, in case some data points are lost. 
Calculations show that five points cannot be arranged 
with the desired properties. Six points can be placed at 
points 90° apart (e.g. on the ±x, ±y, ±z axes). Eight points 
can be placed on the corners of a cube, although this 
arrangement is not unique, since two sets of four points 
could be placed on independently orientated tetrahedra 
(plus an infinite number of other arrangements). There are 
also an infinite number of configurations for seven points, 
but these do not possess a simple symmetry and so would 
be difficult to set up. An infinite number of different 
arrangements are possible for nine points, and for all 
larger numbers and, for some of these (12, 20, 30, for 
example), well-known symmetry patterns can be used. 
For any symmetric arrangement of n points, the moment 
of inertia is I = 2n/3R

2. 

 
The motion analysis system was used to track the position 
of a 32 panel, generic football (an Umbro ball with the 
standard hex-pent pattern) using six markers at orthogonal 
positions (disks of retroreflective tape). These are 2.5 cm 
in diameter and are arranged in orthogonal positions on 
the ball as shown in Figure 2. The tape was extremely thin 
and did not alter the weight of the ball or the air flow over 

its surface. This work builds upon previous work in which 
four ball markers were used. [8] 

 
 
 
 
 

 
 
 

Figure 2. A football with six surface markers in an 
orthogonal configuration. The position vectors of the 
markers are measured with reference to an origin and axes 
fixed in the laboratory. 

 
In the present investigation, it was proposed to investigate 
the accuracy with which a modern motion analysis system 
could obtain a complete description of the ball 
parameters, i.e. the ball’s trajectory in three dimensional 
space, its spin vector also in three dimensions and its 
instantaneous velocity along its path. 

 

3 Problem Solution 
In the investigation reported here, a ball projection 
machine (Mechanical Engineering Department, Sheffield 
University) projected the football towards a net placed at 
one end of a motion analysis laboratory. The ball passed 
through four spinning rollers within the barrel of the 
machine and emerged with a given spin and speed. The 
ball passed through a capture volume approximately 5m 
in length. The experimental layout in the laboratory is 
illustrated in Figure 3. 

 
 
Figure 3. Experimental layout of laboratory in horizontal 
plane (not to scale). One possible ball trajectory is 
represented by the curved line on the figure. The origin of 
the motion analysis system lies at the centre of the capture 
volume. The z axis points vertically up and is at right 
angles to the plane of the page. C- camera (two overhead), 
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BPM – ball projection machine, B – ball, N – net. Dashed 
rectangle – capture volume. 
 
The machine was set up to aim the ball at the net with 
various combinations of ball spin and speed. The capture 
volume was arranged to be about two metres tall, 5.1 m 
long and 1.9 m wide and was about 1 m above the floor of 
the laboratory so that the ball passed through the volume 
at a height of approximately 2.5–3 m above the floor of 
the laboratory en route from the origin to the target. 
 

 
3.1 Trajectory in x-y plane 
 
 

Horizontal Plane (XY) - Linear trend line
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Figure 4. Experimental measurement of the movement of 
the ball in a horizontal plane with linear trend line fit. 
 
 

Horizontal (XY) Plane - quadratic trend line
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2
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Figure 5. Experimental measurement of the movement of 
the ball in a horizontal plane with a quadratic trend line fit 

 
3.2 Rates of spin along x, y and z axes 

 
 
 
 
 
 
 
 
 

 
The spins along x,y and z axes
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Figure 6. Experimental results for the spin 
angular velocity components along the x, y and 
z axes. 
 

3.3 Velocities along x, y and z axes 
 
 
 

Sideways velocity (X)
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Figure 7. Experimental measurement of velocity of ball 
in the sideways direction 
 
 

Forward velocity (Y)
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Figure 8. Experimental measurement of velocity of ball 
in forward direction 
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Vertical velocity (Z)
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Figure 9. Experimental measurement of velocity of ball 
in vertical direction 
 

 

 

 

 

3.4 The radius of the ball 
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Figure 10. Experimental measurement of the radius of the 
ball. 
 
3.5 The y – residuals 

 
Residual (measured y value minus quadratic trend line value)
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Figure11. Calculated residuals (the difference 
between the measured y values and the 
quadratic trend line y values) 

 
3.6 Discussion 

 
The data of section 3.4 (Figure 10) shows clearly that the 
radius of the ball has been found accurately by the 
analysis method (mean = 106.7mm, st. dev. = 0.9mm). In 

the absence of Magnus forces, the trajectory in the xy 
plane (section 3.1) would be expected to be a straight line. 
The scatterplots show that only a very marginal 
improvement was obtained by selecting a quadratic curve 
fit. The difference between the measured y values and 
those obtained from the quadratic trend line (the y 
residuals, section 3.5, Figure 11) are larger than expected, 
ranging from -25 to +36mm. It is currently not known if 
this due to a real fluctuating force on the ball due to air 
turbulence around the ball, or if it is an uncertainty in the 
measurement. More work is needed to answer this 
question. The downward acceleration obtained from 
section 3.3, Figure 9 is 10.245m/s2, close to the 
acceleration due to gravity. The magnitude of the 
sideways velocity (Figure7) indicates an average 
acceleration of 2.03m/s2, although the instantaneous 
velocity fluctuates considerably. If this force were due to 
the Magnus effect, the recoil force on the ball in the x-
direction is approximately 0.8N at this velocity.  The 
initial velocity of the ball was 11.39m/s. 
 
 

4   Conclusion 
The results show that the trajectory parameters of a 
football can, in principle, be measured extremely 
accurately by using the motion analysis system. 
However, there is one problem. This is that the non-
spherical nature of the markers makes it more 
difficult so that the markers cannot be tracked 
continuously across the capture volume. This means 
that the trajectories are broken and labeling can be 
extremely difficult. 
The preliminary data presented here is the result of 
software manipulation of the data after data capture. 
Gaps can be filled by a Woltring routine. However, 
this is not sufficient to recreate the ball completely. 
We have developed ways of recreating the missing 
marker coordinates even if they are not captured 
initially by the camera system. This is possible 
provided at least three markers are visible the whole 
time and the missing markers can be recreated by 
the software (Nexus 1.1, Vicon, Oxford, UK).  
This research is still at an early stage. One way of 
obtaining better data is to increase the number of 
cameras to improve the coverage of the ball. Other 
methods are to develop software which will 
recognize non-spherical markers and which will use 
intelligent decision-making to fill gaps in ball 
trajectories.  
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