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Abstract: - In this paper a method for measuring kinematics of sit-to-stand movement using inertial sensors 
and human body model is presented. The proposed approach fuses data from inertial sensors (accelerometers 
and gyroscopes) and data from three-segment human body model using Extended Kalman filtering technique 
and in this way reduces inaccuracies associated with inertial sensors. Dynamic human body model is 
constructed based on principles of Lagrangian dynamics and incorporates shank, thigh and HAT (Head-Arms-
Trunk) segments. The model equations, which are non-linear and coupled differential equations, are 
incorporated in the EKF to produce better kinematic parameter estimation of sit-to-stand motion. The 
moments needed in model equations (ankle, knee and hip moments) are calculated based on EKF last best 
estimate and Newton-Euler inverse dynamic approach. Outputs from EKF are segmental angles, angular rates 
of change and angular accelerations. These parameters fully describe the motion kinematics of human body. 
The performance of the method is verified by reference measurements acquired with optical motion 
measurement system Optotrak. Obtained results are presented and discussed. Conclusions are drawn and 
guidelines for future method improvement are suggested.
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1   Introduction
Microelectromechanical (MEMS) inertial sensors 
have become widely available over the last few 
years [1]. Their small size and low cost have made 
them attractive for wide range of applications in 
different research areas: robotics, navigation and
attitude-control systems, man-machine interface, 
virtual reality [2], analysis of human motion [3, 4] 
etc. 
When performing dynamic analysis of human 
motion, the knowledge of translational and angular 
velocities and accelerations of segmental centers of 
masses (CoM) is of importance [5]. To measure
these kinematic parameters body mounted inertial 
sensors attached to the human body segment of 
interest, can be used. These sensors have significant 
advantages over more sophisticated motion analysis 
systems commonly used today like Optotrak –
Northern Digital Inc. or Vicon - Vicon Motion 
Systems: a) they are lightweight and portable, b) 
they don’t require complicated and time consuming 
setting up procedures, c) they are unobtrusive since

they don’t constrain user in motion, d) and they are 
less expensive. 
Despite their advantages inertial sensors also have 
their share of drawbacks [5, 6]. The dynamic and 
gravitational component in accelerometer output 
signal can’t easily be distinguished during faster 
movements and the drift in gyroscope output signal 
results in large integration errors. These errors can 
be reduced by introduction of the magnetometer to 
the sensor pack and application of Kalman filtering 
technique to fuse the outputs from all the sensors [2, 
7]. This method yields good results but introduces 
some additional restrictions on measurement setup, 
which can not easily be fulfilled in average 
ambulatory setting. Special care has to be given to 
avoid large metal or magnetic objects in the sensor 
vicinity because such objects can potentially become 
noise sources for magnetometer [7].
In our proposal we assume that magnetometer can 
be substituted in certain applications, by 
introduction of equations of dynamic human body 
model. In this approach, named model based inertial 
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sensing [8], data acquired from inertial sensors and 
data from dynamic human body model [9] are fused 
using Extended Kalman Filter (EKF) [10].
The paper presents the development of model based 
inertial sensing of human body kinematics in sit-to-
stand motion and is structured as follows. In Section 
2 construction of dynamic human body model is 
presented. Next, the accelerometer signal 
decomposition is explained and EKF designed
outlined. In Section 3 obtained results are presented 
followed by explanation of some phenomena’s in 
the results. Finally in Section 4 conclusions are 
drawn and guidelines for future method 
improvement are suggested.

2   Materials and methods
2.1 Dynamic human body model
The proposed method is based on dynamic three-
segment human body model. The model consists of 
three rigid bodies corresponding to shank, thigh and 
HAT (head-arms-trunk) segments (see Figure 1).

Fig. 1 – Three segment human body model

In figure i (i=1, 2, 3) represents segmental angles
with respect to horizontal y axis.
During the modeling phase the following
simplifications were introduced into the model: a) 
body motion is constrained to a sagittal plane, b) 
symmetry of sit-to-stand motion is assumed, c) 
joints are assumed to be ideal with no friction during 
rotation, d) each segment is assumed to be rigid with 
its mass contained at CoM. Model equations 
describing motion of each segment are derived using 
principles of Lagrangian dynamics. For each degree 
of freedom the Lagrangian equation is written:
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where:
           K – is kinetic energy of i-th segment,
           V – is potential energy of i-th segment, and
            T – is generalized forces/moments acting 
                   on i-th segment .

Fig. 2 – Three segment human model geometry and 
notation of parameters

Figure 2 depicts geometry of a model and notation 
used in modeling phase. The notation is

321 M,M,M - ankle, knee and hip moments,

im - mass of the i-th segment,

il - length of the i-th segment,

ic - distance of segmental center of mass 
        (CoM) from distal joint.

Anthropometric data i.e. segmental masses, lengths 
and CoM location are obtained from the literature
[11]. Using (1) and notation from Figure 2, 
equations of motion for shank (2), thigh (3) and 
HAT (4) segments are derived. These equations are 
non-linear and coupled differential equations. From 
(2)-(4) segmental angles, angular velocities and 
angular accelerations can be calculated which fully 
describe the motion kinematics of human body. 
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2.2 Accelerometer signal decomposition 
Inertial accelerometer output signal consists of two 
main components, the dynamic and gravitational. 
These components can only be distinguished when
motion of accelerometer is quasi-static [3]. The 
problems arise when the motion is not aligned with
accelerometer sensitive axis, in which case the true 
acceleration is projected onto accelerometer 
sensitive axis along with gravitational component.
Sum of two components represents the 
accelerometer output for the sensitive axis. Since 
the accelerations expressed in certain reference 
frame are of interest, processing of the
accelerometer output signal is needed. In order to 
obtain accelerations along zREF and yREF, the 
decomposition of the accelerometer signal to its 
main components, and back projection onto the 
reference frame is required. For this the angle 
between sensor’s and reference frames needs to be 
known.
The sensor angle is defined as the angle between the 
z axis of the sensor and the y reference axis as 
shown in Figure 3. This angle was chosen as it is in
accordance with equations of dynamic human body 
model. The component that is of interest is 
acceleration projection component which is then 
projected back onto zREF axis yielding sensor true 
acceleration in zREF direction. Because of the nature 
of inertial sensing, the dynamic acceleration output 
is opposite to true direction of motion. The 
accelerometer signal decomposition   for   z 
component   is    graphically
depicted in Figure 3 and is defined by 
              )singsina(a

REFSENSOR zz           (5)

for z component, and             
                 cosgsinaa

REFSENSOR yy              (6)

for y component.
The sensor angle   in (5) and (6) is available as 
system state of the EKF.

Fig. 3 – Accelerometer signal decomposition

2.3 Extended Kalman Filter architecture
In the proposed method the Extended Kalman Filter 
(EKF) is employed for fusion of the acquired 
accelerometry data and data from dynamic human 
body model. In EKF the system is described by:
the system equation

                              wxAx                        (6)

and the measurement equation

                               ),( vxhz                          (7)

In (6) x describes the state vector and w the white 
process noise, while in (7) h is measurement vector 
and v is the white measurement noise. It is assumed 
that noises v and w are Gaussian distributed, have 
zero mean and are uncorrelated. 
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During the EKF design process, several 
architectures were tested. The selected structure (8), 
(9) demonstrated best performance.

The EKF algorithm was implemented according to 
[10] as show below:
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In (9) the parameters are defined as follows:
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The EKF initial state was set to actual system state 
at the initial time instance.

3   Results
The proposed method was verified on sit-to-stand 
transition of human subject. The results were 
compared to the reference measurements acquired 
by the Optotrak optical motion capture system. 
Measurement setup can be seen in Figure 4. Infrared 
markers were attached to subject’s skin at key 
anatomical points denoting human joints. The
marker motion trajectories were measured by 
Optotrak infrared cameras at sampling rate of 50Hz. 
Subject was standing on AMTI force plate which 
measured floor reaction forces needed. Optionally, 
the   force   plate   can   in   ambulatory   settings   be
substituted by  shoe insole  with force sensors.  For
assessing the seat contact  in our experimental setup
the   multidimensional   force   sensor (JR3 Inc.) was
used. However, in ambulatory setting a simple 
on/off switch would be sufficient for seat contact 
detection. Optical motion capture system was used 
to measure positional coordinates of markers with 
respect to reference coordinate frame. Numerical 
differentiation was accomplished for derivation of 
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velocities and accelerations. This procedure 
introduced numerical error to the input signals. 

Fig. 4 – Measurement setup

For determining the moments 1M , 2M  and 3M that 
act in the human joints and can not be directly 
measured by sensors, the inverse Newton-Euler 
approach was utilized. Overview of the algorithm 
used iteratively can be seen in Figure 5.

Fig. 5 – Block scheme of joint moment assessment

The obtained results of joint angle assessment 
compared to the reference measurements are 
presented in Figure 6. Figure 7 presents the angle 
estimation error, while Figure 8 depicts associated 
root mean square error (RMSE) values for each of 
angle estimate. From the results it is evident that 
proposed method shows good performance. The 
estimation error is smallest for shank angle with 
RMSE value of 1.582o, while the error is somewhat 
larger for thigh and HAT angles with RMSE values 
of 2.101o and 2.138o, respectively.
Some oscillations can be observed in 2  and 3
angle estimation. The oscillations are attributed to 
the fact that irregular oscillations happen near the 
angle of 90o where some components in Newton-
Euler equations for joint moment calculation change 

sign, due to change in relative position of the  
segment and joint forces.

Fig. 6 – Comparison of reference measurements and 
estimation

Fig. 7 – Estimation error

Fig. 8 – RMSE values

Comparison of moments calculated off-line using
Optotrak data and moments calculated by iterative 
algorithm in EKF reveals good matching as 
presented in Figure 9 for the knee moment. The 
solid line in Figure 9 corresponds to the knee 
moment calculated inside EKF loop from EKF 
estimates, while the dotted line represents knee
moment calculated off-line from data measured with 
Optotrak.
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Fig. 9 – Comparison of assessed knee moments
during sit-to-stand transfer

4   Conclusion
The model based inertial sensing method for 
estimation of human body motion kinematics based 
on body model and Extended Kalman filtering is 
developed.
In motion equations the joint friction was omitted 
for simplicity and computational efficiency and 
restriction of the motion to the sagittal plane was
introduced. We believe higher level of accuracy 
could be achieved by inclusion of some additional 
phenomena’s or by making model assumptions less 
restrictive. The EKF structure was designed with 
objective of computational simplicity and efficiency
in mind. 
Obtained results show good tracking capability for 
all three estimated segmental angles. The best 
tracking is achieved for the shank (RMSE: 1.5820), 
although other angles estimates also have low 
RMSE values (2.1010 and 2.1380, respectively). This 
can be explained by the fact that equations 
describing the shank motion have simpler form in 
respect to others and also range of motion is smaller 
than that of the other segments. Small oscillations 
are present in thigh and HAT segment estimation at 
time of 0.9 s after start. The oscillations are 
attributed to Newton-Euler inverse dynamic 
equations for knee and hip joint which change their 
form due to the change in sign for some of its 
components and can be reduced with fine-tuning of 
EKF parameters. EKF parameters were manually 
tuned during filter design. 
The presented approach and its results are the first 
stage in development phase of low cost inertial 
sensor based kinematic measurement system. For 
further improvements some modifications in the 
method structure and measurement procedure are 
planned. Optimization of EKF filter tuning 
(selection of matrices R, Q and P) is planned based 
on tuning criteria [12]. Higher sampling rate should
also improve accuracy of estimation. Finally the 

extensive testing is planned based on data acquired
by inertial sensors in sit-to-stand motion of a group 
of healthy and impaired subjects. 
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