
Modeling Epistemic Knowledge about Users

MIRCEA PREDA
University of Craiova

Department of Computer Science
Al. I. Cuza street 13, 200585 Craiova

Romania
mirceapreda@central.ucv.ro

Abstract: Representing what an intelligent agent knows or believes can be an important feature for an entity that
acts in a collaborative environment. Epistemic logic programs are a clear way to reason about what an intelligent
agent knows or believes, but the complexity of the reasoning is exponential. The paper presents a new kind of
logic programs, the logic programs with two types of negation as failure operators. An answer set semantics is
defined for these programs and it is proved that this semantics allows representing epistemic knowledge. More-
over, a polynomial approximation for this semantics is constructed and the approximation maintains the epistemic
knowledge representation possibilities. The paper concludes with examples of knowledge representation resolved
using the new proposed type of logic programs. They show how the logic programs can be integrated in a human
computer interface.

Key–Words: Knowledge representation, epistemic logic programs, answer set semantics, well founded semantics,
human computer interface.

1 Introduction

Epistemic logic programs ([3], [9]) are a particular
type of logic programs that are able to represent epis-
temic information about an intelligent agent. Epis-
temic information is particular important for applica-
tions that interact with human users. For example, for
a Web recommender application is important to fig-
ure what knows or believes a human visitor in order
to provide accurate recommendations[7]. Knowledge
about visitors can be represented by logic programs
and, by performing logic reasoning, a Web recom-
mender can establish what knows or believes a partic-
ular visitor. Similarly, in an e-learning application is
important to realize what knows or believes a student
in order to adjust the learning process to his needs.
Unfortunately, epistemic logic programs have a seri-
ous drawback, the complexity of the reasoning is ex-
ponential regarding the number of atoms from a epis-
temic logic program.

In this paper, we propose a new type of logic pro-
grams, the logic programs with two type of negation
as failure operators and show that these programs are
able to clearly and efficiently represent epistemic in-
formation. First, the syntax and the answer set seman-
tics of the logic programs with two negations (LP2N)
are defined and it is proved that the answer set se-
mantics allows representing what an intelligent agent
knows or believes. After that, a polynomial time

approximation for the answer set semantics is con-
structed and it is shown that the approximation main-
tains the epistemic capabilities of the answer set se-
mantics. Several examples of knowledge representa-
tion using these programs are provided. The paper
concludes with a summary of the obtained results.

These developments are an extension of the work
presented in [5] and [6]. The logic programs intro-
duced by these papers can use an arbitrary number of
negation as failure operators but they are more diffi-
cult to understand and interpret. Also, the polynomial
approximation results are weaker than the newly ex-
posed ones.

2 Mathematical background

Definition 1 Let us consider a partial ordered set
(L, <). (L, <) is a lattice if and only if ∀x, y ∈ L
the set {x, y} ⊆ L has an infimum and a supremum.
(L, <) is a complete lattice if every subset A ⊆ L has
an infimum and a supremum.

Definition 2 Let (L, <) a partial ordered set and f :
L → L a function. f is called monotone if and only
if ∀x, y ∈ L, x < y then f(x) < f(y). f is called
anti monotone if and only if ∀x, y ∈ L, x < y then
f(y) < f(x).

Theorem 3 (Knaster-Tarski theorem [4]) Let (L, <)
be a complete lattice and let f : L → L a monotone

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 69

function. Then the set of the fix points of f(.) in L is
also a complete lattice.

Remark 4 Since complete lattices cannot be empty,
the theorem in particular guarantees the existence of
at least one fixed point of f(.), and even the existence
of a least (or greatest) fixed point. The smallest fix
point of f(.) is the smallest element x with the prop-
erty that f(x) = x or, equivalently, f(x) < x. The
greatest fix point of f(.) is the greatest element x with
the property that f(x) = x.

Definition 5 A definite logic program Π is a collec-
tion of rules

C ← A1, ..., Am

where m ≥ 0 and C, A1, ..., Am are ground atoms.
The set of the all atoms from a definite logic program
Π is called Herbrand Base and denoted by HB(Π).
The minimal model of a definite logic program Π, de-
noted by m(Π), is the smallest subset of HB(Π) with
the property that for every rule C ← A1, ..., Am if
C ∈ m(Π) then {A1, ..., Am} ⊆ m(Π).

3 Logic programs with two negation
operators

Let us consider two operators of negation as failure:
not1 and not2.

Definition 6 Formally, by a logic program with two
negation operators (LP2N), we mean a collection(set)
of rules that can have two forms:

C ←− A1, ..., Am, not1B1, ..., not1Bn

C ←− A1, ..., Am, not2B1, ..., not2Bn

where m, n ≥ 0, C, As, Bs are ground atoms. The
expression to the left of←− is called the head of the
rule, while the expression to the right of←− is called
the body of the rule.

Definition 7 Let Π be a LP2N. By ord(Π), we denote
the greatest index of the negation as failure operators
that appear in Π. ord(Π) ≤ 2. If Π does not contain
negation as failure then ord(Π) = 0.

Definition 8 (an extension of Gelfond-Lifschitz trans-
formation [2]) Let Π be a LP2N and ord(Π) = k ≥ 1.
For any set S of literals, we denote by ΠS the LP2N
obtained from Π by deleting

(I) each rule that has a formula notkB in its body
with B ∈ S

(II) all formulas of the form notkB in the bodies of
the remaining rules.

ord(ΠS) ≤ k − 1.

Definition 9 Let Π be a LP2N such that ord(Π) = 0.
The answer set of Π is the smallest (in the sense
of the set-theoretic inclusion) subset S ⊆ HB(Π)
such that for any rule C ←− A1, ..., Am from Π if
{A1, ..., Am} ⊆ S then C ∈ S. Let Π be a LP2N and
ord(Π) ≥ 1. We say that S ⊆ HB(Π) is an answer
set of Π if and only if

S =
⋂

S
′∈AS(ΠS)

S
′

where, for any LP2N Π, by AS(Π) we denote the fam-
ily of the all answer sets of Π.

An answer set should be viewed as a possible
state of the world. Let Π be an LP2N and S ∈ AS(Π)
an answer set. The answer of the pair (Π, S) to an
atom query q is Yes under answer set semantics if
q ∈ S and No if q /∈ S. We will say that, re-
garding to a LP2N Π, an atom a can be considered
known if a ∈

⋂
S∈AS(Π) S (a appears in the all pos-

sible states of the world) and a can be believed if
a ∈

⋃
S∈AS(Π) S (a appears in at least one possible

state of the world).

Proposition 10 Let Π be a LP2N with ord(Π) = 1
and a ∈ HB(Π). We build the LP2N Π′ adding to Π
the rules

p←− not1 a
q ←− not2 p

where p,q are new atoms, p, q /∈ HB(Π).
In these conditions, the following equivalences are
true:

(I) ∃S ∈ AS(Π) such that a ∈ S ⇐⇒ Π′ |= q (i.e.
Π′’s answer to the query q is yes).

(II) ∀S ∈ AS(Π) , a /∈ S ⇐⇒ Π′ |= p.

Proof: We will prove that Q is an answer set of Π′ if
and only if

Q =


⋂

S∈AS(Π)

S ∪ {p} if a /∈
⋃

S∈AS(Π)

S⋂
S∈AS(Π)

S ∪ {q} if a ∈
⋃

S∈AS(Π)

S
.

”⇒” Consider an answer set Q ∈ AS(Π′), Q =⋂
S′∈AS(Π′Q)

S′. There are two cases.

Case 1. p ∈ Q. Then Π′
Q

= Π∪{p←− not1 a}.
The following equivalence is obvious: S ∈ AS(Π)

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 70

iff S′ ∈ AS(Π′
Q

) where S′ =
{

S if a ∈ S
S ∪ {p} if a /∈ S

.

Therefore,

⋂
S′∈AS(Π′Q)

S′ =


⋂

S∈AS(Π)

S if a ∈
⋃

S∈AS(Π)

S⋂
S∈AS(Π)

S ∪ {p} if a /∈
⋃

S∈AS(Π)

S

But p ∈ Q, therefore a /∈
⋃

S∈AS(Π)

S.

Case 2. p /∈ Q. Then Π′
Q

= Π ∪ {p←− not1 a,
q ←−}. The following equivalence is obvious: S ∈
AS(Π) if and only if S′ ∈ AS(Π′

Q
) where

S′ =
{

S ∪ {q} if a ∈ S
S ∪ {p, q} if a /∈ S

. Therefore

⋂
S′∈AS(Π′Q)

S′ =


⋂

S∈AS(Π)

S ∪ {q} if a ∈
⋃

S∈AS(Π)

S⋂
S∈AS(Π)

S ∪ {p, q} if a /∈
⋃

S∈AS(Π)

S

But p /∈ Q, therefore a ∈
⋃

S∈AS(Π)

S.

”⇐” Case 1. Consider Q =
⋂

S∈AS(Π)

S ∪ {p} and

a /∈
⋃

S∈AS(Π)

S. Then Π′
Q

= Π ∪ {p ←− not1 a}.

We obtain that
⋂

S′∈AS(Π′Q)

S′ =
⋂

S∈AS(Π)

S∪{p} = Q,

therefore Q ∈ AS(Π′).
Case 2. Consider Q =

⋂
S∈AS(Π)

S ∪ {q} and a ∈⋃
S∈AS(Π)

S. Then Π′
Q

= Π ∪ {p←− not1 a, q ←−}.

We obtain that
⋂

S′∈AS(Π′Q)

S′ =
⋂

S∈AS(Π)

S∪{q} = Q,

therefore Q ∈ AS(Π′).

Remark 11 Π′ has only one answer set.

Remark 12 It is natural to say that an intelligent
agent, represented by a set of premises Π, may believe
that an atom a is true if and only a occurs in at least
one answer set of Π. The operator M (believe oper-
ator) defined for epistemic logic programs [3] can be
incorporated in this way into LP2Ns. The newly in-
troduced atoms p and q indicate us if a occurs in at
least one answer set of Π or not.

Proposition 13 Let Π be a LP2N with ord(Π) = 1
and a ∈ HB(Π). We build the program Π′ adding to
Π the rule

p←− not2 a

where p is a new atom, p /∈ HB(Π). In these condi-
tions, the following equivalences are true:

(I) a ∈ S, ∀S ∈ AS(Π)⇐⇒ Π′ |= a

(II) ∃S ∈ AS(Π) such that a /∈ S ⇐⇒ Π′ |= p.

Proof: The proof is based on the equivalence: Q is an
answer set of Π′ if and only if

Q =


⋂

S∈AS(Π)

S if a ∈
⋂

S∈AS(Π)

S⋂
S∈AS(Π)

S ∪ {p} if a /∈
⋂

S∈AS(Π)

S
.

This proposition allows to incorporate the oper-
ator K (know operator) defined for epistemic logic
programs into LP2Ns. It is natural to say that an intel-
ligent agent, with a set of premises Π, knows that an
atom a is true if and only if a occurs in all answer sets
of Π. The newly introduced atom p indicates if a does
not occur in all answer sets of Π.

4 An approximation for the answer
set semantics

The answer set semantics provides us intuitive an-
swers but in practice its exponential complexity is a
major drawback.

Let us consider the function fΠ : HB(Π) →
HB(Π)

fΠ(S) =
{

m(Π) if ord(Π) = 0
inf{S′|S′ = fΠS (S′)} otherwise

,

where Π is a LP2N, m(Π) is the minimal model
of the LP2N Π and inf{S′|S′ = fΠS (S′)} =⋂

S′=f
ΠS (S′) S′.

A LP2N Π can be divided in three parts: Π0 is
the set of rules of Π that do not contain the negation
as failure, Π1 is the set of rules of Π that contain the
not1 negation as failure operator and, similarly, Π2

includes the rules that contain the not2 operator.

Definition 14 A LP2N Π is named stratified if and
only if the following condition hold:

head(Π2) ∩ body(Π1 ∪Π1
0) = ∅

where head(Π) is the set of the atoms which occur in
the heads of rules from Π, body(Π) is the set of the
atoms from the bodies of rules from Π and Π1

0 ⊆ Π0

is the smallest subset of rules of Π0 which satisfies the
following properties:
- it contains all rules of Π0 with the property that their
heads occur in a body of rule from Π1

- if the head of a rule from Π0 occurs in the body of a
rule from Π1

0 then this rule belongs to Π1
0.

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 71

Lemma 15 Let Π be a stratified LP2N with
ord(Π) = k ≤ 2. Then, the application fΠ(.) is anti-
monotone.

Proof: Let S1 ⊆ S2 ⊆ HB(Π). It can be proved that
fΠ(S1) ⊇ fΠ(S2).

If ord(Π) = 0 then fΠ(S1) = fΠ(S2) = m(Π).
If ord(Π) = 1 then ΠS1 ⊇ ΠS2 , ord(ΠS1) =

ord(ΠS2) = 0, m(ΠS1) ⊇ m(ΠS2) and, conse-
quently, fΠ(S1) ⊇ fΠ(S2).

If ord(Π) = 2 then ΠS1 ⊇ ΠS2 , ord(ΠS1) =
ord(ΠS2) ≤ 1. The following relations are true:

ΠS1 = ΠS1
2 ∪ (Π1 ∪Π0),

ΠS2 = ΠS2
2 ∪ (Π1 ∪Π0),

ΠS1
2 ⊇ ΠS2

2 ,

ΠS1 \ΠS2 = ΠS1
2 \ΠS2

2 ,
0 = ord(ΠS1 \ΠS2).

Due to stratification,

head(ΠS1 \ΠS2) ∩ (Π1 ∪Π1
0) = ∅. (1)

Let S′ be a fix point of the function fΠS1 (.),
fΠS1 (S′) = S′. There are two cases.

Case 1. ord(ΠS1) = 0. Then ord(ΠS2) = 0.
fΠS1 (S′) = m(ΠS1), so S′ = m(ΠS1). There
is S′′ = m(ΠS2) such that S′′ ⊆ S′ and S′′ =
fΠS2 (S′′).

Case 2. ord(ΠS1) = 1. Then ord(ΠS2) = 1.

fΠS1 (S′) =
⋂

S∗=f
ΠS1

S′ (S
∗)

S∗ (2)

= m(ΠS1
S′

) (3)

= m(ΠS1
2 ∪ΠS′

1 ∪Π0). (4)

Let S∗ be such that S∗ = m(ΠS1
2 ∪ΠS′

1 ∪Π0) and
S∗∗ be the set obtained by removing from m(ΠS1

2 ∪
ΠS′

1 ∪Π0) the atoms generated by the rules from ΠS1
2 \

ΠS2
2 . Let S′′ be S′ without the atoms generated by

ΠS1
2 \ΠS2

2 . S′′ =
⋂

S∗∗=m(Π
S2
2 ∪ΠS′′

1 ∪Π0)

S∗∗, where S∗∗

sets corresponds to the S∗ sets from the formula 4.
Results that S′′ ⊆ S′ and S′′ = fΠS2 (S′′).

We proved that for every fix point S′ of fΠS1 (.),
S′ = fΠS1 (S′) there is S′′ a fix point of fΠS2 (.),
S′′ = fΠS2 (S′′) such that S′′ ⊆ S′. Consequently,
inf{S′′|S′′ = fΠS2 (S′′)} ⊆ inf{S′|S′ = fΠS1 (S′)}
and fΠ(S1) ⊇ fΠ(S2).

Proposition 16 Let Π be a stratified LP2N with
ord(Π) ≤ 2. The following relations are true:

lfp(f2
Π(.)) ⊆ inf{S|S = fΠ(S)} =

⋂
S∈AS(Π)

S,

⋃
S∈AS(Π)

S = sup{S|S = fΠ(S)} ⊆ gfp(f2
Π(.)).

Consequently, lfp(f2
Π(.)) and gfp(f2

Π(.)) are an ap-
proximation of the answer set semantics for the logic
program Π.

Proof: f2
Π(.), is monotone and, according to Tarski

theorem, it has smallest and greatest fix points. The
fix points of fΠ(.) are also fix points for f2

Π(.) and the
theorem is proved.

5 Properties of the approximation
for the answer sets semantics

The following two propositions show that using the
approximation of the answer set semantics the LP2Ns
are still able to represent epistemic knowledge. The
proof of these results can be obtaining extending the
results from [6].

Proposition 17 Let Π be a stratified LP2N with
ord(Π) ≤ 2 and a an atom, a ∈ HB(Π). We build
the LP2N Π′ adding to Π the rule

p← not2 a

where p is a new atom, p /∈ HB(Π). Then

lfp(f2
Π′(.)) =

{
lfp(f2

Π(.)) if a ∈ lfp(f2
Π(.))

lfp(f2
Π(.)) ∪ {p} if a /∈ gfp(f2

Π(.))

It is natural to define that an intelligent agent with
a set of premises Π knows that an atom a is true if and
only if a ∈ lfp(f2

Π′(.)) regarding the approximation
of the answer set semantics. An intelligent agent will
not known that an atom a is true if a /∈ gfp(f2

Π(.)).
The newly introduced atom p helps to determine when
a /∈ gfp(f2

Π(.)).

Proposition 18 Let Π be a stratified LP2N with
ord(Π) = 1 and a an atom, a ∈ HB(Π). We build
the LP2N Π′ adding to Π the rules:

p← not1 a
q ← not2 p

where p, q are new atoms, p, q /∈ HB(Π). In these
conditions

lfp(f2
Π′(.)) =


⋂

S∈AS(Π)

S ∪ {q} if a ∈
⋃

S∈AS(Π)

S⋂
S∈AS(Π)

S ∪ {p} if a /∈
⋃

S∈AS(Π)

S

It is natural to define that an intelligent agent with
a set of premises Π may believe that an atom a is
true if and only if q ∈ lfp(f2

Π′(.)) in relation with
the approximation of the answer set semantics. If
q ∈ lfp(f2

Π′(.)) then it is guaranteed that a occurs
in at least one answer set of Π.

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 72

6 Examples
Representing what agents know or believe. Con-
sider the following information: ”At a university,
to promote the artificial intelligence(ai) course it is
needed to read at least one of the books book1 and
book2. If a student takes a course and he knows that
a certain book is needed to be read then he buy the
book. But, if a student takes a course and he may be-
lieve that a certain book is needed to be read at this
course then he will search the book at library. John
takes the ai course.”. The epistemic program [3] that
corresponds to our information, denoted by Πep, is:

take(john, ai)←
need(ai, book1) or need(ai, book2)←
buy(X, Y)← take(X, Z), Kneed(Z, Y)
search(X,Y)← take(X, Z), Mneed(Z, Y)

Here, the rules that contain variables are considered
as representing the sets of their ground instantiations.
By applying the previous results, the epistemic logic
program can be transformed into the LP2N Π:

need(ai, book1) ← not1 need(ai, book2)
need(ai, book2) ← not1 need(ai, book1)
take(john, ai) ←

buy(X, Y) ← take(X, Z),
know need(Z, Y)

search(X, Y) ← take(X,Z),
believe need(Z, Y)

absent need(Z, Y) ← not1 need(Z, Y)
believe need(Z, Y) ← not2 absent need(Z, Y)
nknow need(Z, Y) ← not2 need(Z, Y)
know need(Z, Y) ← not2 nknow need(Z, Y)

Let us point that the disjunction operator or
was replaced by two rules using negation as fail-
ure as is discussed in [8]. In these conditions
we have AS(Π) = {{search(john, book1),
search(john, book2), believe need(ai, book1),
believe need(ai, book2), nknow need(ai, book1),
nknow need(ai, book2), take(john, ai)}} corre-
sponding to our specifications. Πep is more compact
because to epistemic logic programs the concepts ”a
reasoner may believe that ...” and ”a reasoner knows
that ...” are included in the semantics of the operators
M and K. To LP2Ns these concepts are explicit
defined in programs.

Representing the Unknown. The statements of
the form ”unknown p” cannot be proper represented
by extended logic programs in the presence of mul-
tiple belief sets (answer sets). A detailed discussion
on this topic is in [3] where the epistemic specifi-
cations are proposed as solution. More precise, a
statement ”unknown p” is represented there as a con-
junction ¬Kp and ¬K¬p where Kp stands for ”p is
known to be true by a reasoner based on the current

set of premises ”. An alternative view point can be the
next. Let us consider a LP2N Π with ord(Π) = 1 as
set of premises and an atom p ∈ HB(Π). A state-
ment ”unknown p” is represented by the conjunction
not2p, not2¬p. The intended meaning is ”we cannot
prove p and ¬p with the information from Π (with the
information of the levels less or equal with 1)”. Let us
present this using an example from [3, 1]. Consider
the LP2N Π:

eligible(X)← highGPA(X)
eligible(X)← minority(X), fairGPA(X)
¬eligible(X)← ¬fairGPA(X),¬highGPA(X)
fairGPA(mike)← not1 highGPA(mike)
highGPA(mike)← not1 fairGPA(mike)

These rules represent the criteria used by a cer-
tain college for awarding scholarship and the situa-
tion of the student named ”mike”. We wish to repre-
sent the following information: ”The students whose
eligibility is not determined by the first three rules
should be interviewed by the scholarship commit-
tee” i.e. interview(X) if neither eligible(X) nor
¬eligible(X) is known. Consider the LP2N Π′ ob-
tained adding to Π the rule:

interview(X)← not2 eligible(X), not2 ¬eligible(X)

We obtain AS(Π′) = {{interview(mike)}},
lfp(f2

Π′(.)) = {interview(mike)}, therefore Π′ an-
swers yes to the query interview(mike) in the an-
swer set semantics and regarding the approximation
of the answer set semantics. Consequently, Π′ has the
intended behavior. The strong negation was handled
by using the concept of positive form.

Representing user behavior related knowledge
for a Web recommender system. Let us consider a
Web recommender system for a digital library Web
site that has hundreds of books organized in domains.
LP2N programs are used in Web pages to describe
what elements should be highlighted to the poten-
tial readers according with their state of knowledge.
The following samples of epistemic reasoning can in-
cluded:

• If a visitor has not complete information (does
not known) about the presence of a general inter-
est domain in the library then the recommender
system must inform the visitor about the do-
main. The epistemic rule formalizing this piece
of knowledge is

inform(X)← ¬Kincluded domain(X),
general interest domain(X).

• If a visitor has not complete information regard-
ing the presence of a specialized domain in the

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 73

library and the recommender system establishes
that the domain may be of interest for the visi-
tor then it presents the domain. The associated
epistemic rule is

inform(X) ← ¬Kincluded domain(X),
specialized domain(X),
Minterested(X).

• A visitor may be interested by a domain X if
he/she visited a page with information about a
related domain Y.

interested(X) or ¬interested(X) ←
visited(Y), related(X,Y).

• A visitor knows that a domain X is included in
the library if he/she visited a page of a book Y
from the domain.

included domain(X) ← visited(Y),
domain(Y,X).

The programs attached to the Web pages
describing books include their domains. For
example, the program attached to the book
”the c language kernighan” includes the follow-
ing two rules:

visited(the c language kernighan) ←
domain(the c language kernighan,

programming languages) ← .

In some cases, a book cannot a have a clear spec-
ified domain. Different visitors can consider it in-
cluded in a domain or not. For example, the
book ”win32 database develop guide” has attached
the rule:

domain(win32 database develop guide,
multimedia databases) or

¬domain(win32 database develop guide,
multimedia databases) ← .

Obviously, a book can belong to more domains.
The above programs use the convenient syntax

of the epistemic logic programs based on the opera-
tors K (know) and M (believe) [3]. These programs
must be converted to LP2Ns in order to benefit from
the polynomial complexity result stated by proposi-
tion 16. The conversion will be based on propositions
17 and 18 and will be automatically performed by a
logic programming support system. This logic sup-
port system has as purpose to compute the approxi-
mations of the answer set semantics for the logic pro-
grams included in the Web recommender system.

7 Conclusion
A new kind of logic programs with two types of
negation as failure operators is proposed to represent
knowledge about users. The answer set semantics for
these programs and its polynomial approximation are
able to represent epistemic information. Mathemati-
cal results indicate how to incorporate epistemic into
LP2N and how transform epistemic logic programs
into equivalent LP2Ns. Several examples show how
LP2Ns can be used to incorporate knowledge in hu-
man computer interfaces. It is important to mention
that the friendly syntax of the epistemic logic program
[3] can still be used. Epistemic logic programs can be
automatically translated in their LP2N counterparts.

Acknowledgments: The research was supported by
the Romanian National University Research Council
(AT grant No. 102/2007).

References:

[1] Chitta Baral and Michael Gelfond. Logic
Programming and Knowledge Representation.
Journal of Logic Programming, 19,20:73-148
(1994).

[2] Michael Gelfond and Vladimir Lifschitz. Classi-
cal Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 9:365-
385 (1991).

[3] Michael Gelfond. Logic Programming and Rea-
soning with Incomplete Information. Annals of
Mathematics and Artificial Intelligence, 12:89-
116 (1994).

[4] J. W. Lloyd. Foundations of Logic Program-
ming. Springer-Verlag, second edition, 1987.

[5] M. Preda. Reasoning with epistemic informa-
tion, Annals of the University of Craiova, Math-
ematics and Computer Science series, 1997,
24:166-186, ISSN: 1223-6934 (1997)

[6] M. Preda. A well founded semantics for logic
programs with stratified negation, Annals of the
University of Craiova, Mathematics and Com-
puter Science series, 28:183-193, ISSN: 1223-
6934 (2001).

[7] Mircea Preda and Dan Popescu. Personalized
Web Recommendations: Supporting Epistemic
Information about End-Users, Proc. of the 2005
IEEE/WIC/ACM Int. Conf. on Web Intelligence,
Compiegne, France, IEEE Computer Press,
ISBN: 0-7695-2415-X, pp. 692-695, (2005)

[8] Marco Schaerf. Negation and minimality in dis-
junctive databases. Journal of Logic Program-
ming, (23):63-87, (1995).

[9] Yan Zhang, Epistemic Reasoning in Logic Pro-
grams, IJCAI-07, pp. 647-652, (2007)

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 74

	Text4:

