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Abstract: – The work presents a domain decomposition technique for coupled fields. The mathematical model 

for magnetic field is based on time-harmonic Maxwell equations in vector magnetic potential formulation for 
axisymmetric fields. The model for the heat transfer is the heat conduction equation. A numerical model based on 
the finite element method is developed. The dynamic interfaces of the subdomains in the induction heating 
simulation can be exploited in the sense of reduction of the computational effort. The analysis domain is divided 
into two overlapping subdomains for the two coupled-fields considering physical significance of the pseudo-
boundary of the two subdomains. 
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1 Introduction 
To analyse a large complex system it is necessary 

for economic reasons in terms of computer resources, 
to divide the system into a number of small 
components or subsystems. Each component is 
considered as though it was separate problem and it is 
solved independently. The subsystems are finally 
coupled together in such way that interface conditions 
are satisfied at common boundaries. 

The decomposition technique could be determined 
from mathematical properties of the problem, or from 
the geometry of the problem. There is no general rule 
for the domain or/and operator decomposition. It is 
defined in a somewhat random fashion but in the case 
in discussion there are physical considerations for 
domain decomposition.  

Although a tremendous variety of numerical 
methods have been proposed for simulation of these 
systems, the most recently invented parallel 
computational strategies are largely based on the finite 
element (FE) and multigrid methods [1]. The 
programs for the simulation of the distributed-
parameter systems have an inherent parallelism when 
FE method is used. 

We shall limit our discussion to the solution of 
partial differential equations (PDE) in 2D space using 

a distributed unstructured mesh of triangles with linear 
approximations within an element (piecewise linear 
elements), although the ideas presented here do extend 
to higher order elements. Although we present a single 
target example, the issues of the parallel 
implementation of FE programs are not strictly 
dependent upon these particular case. 

In our presentation we consider an important 
industrial application of the coupled fields: the 
induction heating of the bulk metals [4]. Induction 
heating describes the thermal conductivity problem in 
which the heat sources are the eddy currents induced 
in conducting materials by a varying magnetic field. 
This is a convenient method for bulk-heating metals to 
an imposed temperature. We assume that the sources 
of the magnetic field have sinusoidal time dependence. 
More, we consider the quasistatic case when we 
neglect the effects due to displacement currents. 

The mathematical model for electromagnetic and 
thermal fields are partial derivative equations. Finite 
element method [FEM] leads to coupled systems of 
algebraic equations. The method is very flexible with 
respect to geometric shape of the domain and essential 
boundary conditions [1] 

Although the final numerical models are algebraic 
equations that are coupled, the numerical models for 
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coupled problem can be obtained by one of the 
following approaches: 

1. Starting with the space discretization 
2. Starting with discretization in time 

In the first strategy, the partial derivative equations 
are transformed, by finite element discretization in 
space, to a system of ordinary differential equations. 
(ODE). In this way we can use the large number of 
time-discretization methods developed in the 
professional literature of ODE world. 

In the second approach, we start with one of the 
finite difference schemes for time discretization. One 
of the most known method is the so-called θ-rule [6]. 
For different values of θ we obtain different schemes 
as the forward Euler scheme, the backward Euler 
scheme and Crank-Nicholson scheme. Each of them 
has some limitations because of the stability and error 
in the time approximation.  

 
 

2 Coupled electromagnetic-thermal 

fields 
The electromagnetic and thermal fields coexist in 

the same geometry, in the same electromagnetic 
device. These fields interact. In our target example 
shown in Fig. 1, the eddy currents generated by an 
electromagnetic inductor are used as the thermal heat 
sources through the Joule effect.  

A complete mathematical model for coupled 
electromagnetic-thermal fields involves Maxwell’s 
equations and the heat conduction equation [1]. 
Combining these equations yields a coupled system of 
non-linear equations. The mathematical models of the 
two fields are coupled because the most of the material 
properties are strongly dependent on temperature. 
Especially the following characteristics depend on the 
temperature: electric conductivity, magnetic 
permeability, and specific heat and thermal 
conductivity. 

Another important coupling term is the heat source. 
In our application the heat in device is generated by 
ohmic losses from the eddy currents. 

 As a general conclusion, any change in the 
physical or geometric parameters of an 
electromagnetic device will affect both magnetic and 
thermal fields.   

In our work we use 2D-models that can be 
applicable to parallel-plane and axisymmetic fields. 
We assume that the sources of the magnetic field have 
sinusoidal time dependence. In this case in A-
formulation, with A the magnetic vector potential, the 
2D eddy current problem is described by the following 
equation [1]:  
 VsJAjA σωσν +=+×∇×∇ )(  (1) 

where: ω is the angular velocity of the steady-state 
alternating-current problem, Js is the amplitude of the 
external current density, V is a scalar potential and J=-
jωσA is the density of the eddy currents. In Eq. (1) A 
is the complex notation of the vector potential Oz, or 
azimuthal component. The subscript of A is not used 
for the simplicity. 

In our example, we have a rotational or 
axisymmetric field case so that the magnetic potential 
A has an azimuthal component but not others. The 
mathematical model reduces to the equation [3]: 
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The boundary conditions are Dirichlet and 
Neumann’s conditions. 

Mathematical model for the heat transfer is the heat 
(diffusion) equation, which has the form [1]: 

0,)()( >Ω∈+∇⋅∇=
∂

∂
txqTk

t

T
cγ  (3) 

with initial and boundary conditions. In Eq. (3) the 
significances of the variables are: T (x, t) is the 
temperature in point of coordinates x at the time t; k is 
the thermal conductivity; γ is the density; c is thermal 
capacity and q is the density of the heat source. Both c 
and q depend on the temperature. The analysis domain 
is denoted by Ω.  

The heat is generated by ohmic losses from the 
eddy currents and can be expressed in terms of the 
time derivative of A [4]: 

  
2

*
2 AA

q
⋅

= σω   (4) 

where A* is the complex conjugate of A.  
Eq. (4) is solved with boundary conditions that can 

be: Dirichlet, Neumann, convection and radiation.  In 

 
Fig.1 – Induction heating device 
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induction heating the radiation can not be neglected. 
The Stefan-Boltzman law gives P the radiation loss: 

)44(81067.5 aTTP −
−

×= ε  

where ε is the emissivity coefficient of the surface 
(dimensionless), T is the absolute surface temperature 
(K) and Ta  is the ambient temperature. 

Many analysis techniques for coupled problems in 
induction heating were based on the simplifying 
assumption that all heat entered at the workpiece 
surface. In reality the penetration depth of the 
magnetic field depends on the frequency of the supply. 
The above assumption is true if the frequency is very 
high so that the depth of heating is small compared 
with geometrical dimensions of the workpiece (radius 
in our example, or thickness for a plate). 

In analysis of the device shown in Fig. 1, we must 
consider the heat distribution in the workpiece and 
heat lost by radiation from the workpiece surface. 

  
 

3 Numerical models for coupled fields 
The coupled problem in the induction heating devices 
is partly parabolic and partly elliptic so that this special 
case can be called a parabolic-elliptic problem. A 
discrete formulation can be obtained by the finite 
element method (FEM). By Galerkin procedure, we 
obtain a numerical model. There is a large amount of 
good books about FEM so that it is not case to present 
FEM. Essentially, the analysis domain is divided in 
linear triangular elements and the unknowns A and T 
are determined in the mesh nodes. 

The two field problems can be solved in different 
space domains that are overlapping. The situation is 
generated by physical considerations. For example, the 
thermal field is of interest in the workpiece and the 
magnetic field is of interest at the workpiece surface. 
More, at high-frequency of the coil current, the 
penetration depth of the magnetic field is small so that 
only a small layer of the workpiece can be considered 
in the analysis domain of the magnetic field. The 
penetration depth of the magnetic field is dependent on 
the temperature and time so that we have an analysis 
domain with a dynamic boundary.  

In general, the time dependent problems after a 
spatial discretization can lead to a lumped-parameter 
model ([2],[6]):  

 0),...,,,...,( 11 =ppA TTAAf   (5) 

 0),...,,,...,( 11 =ppT TTAAf   (6) 

where the subscript denotes the original problem 
(A – for the magnetic field in the magnetic vector 
potential formulation; T – for the thermal field). 

It is not the purpose of this work to present the 
large number of numerical methods for the systems (5) 

and (6). For coupled problems we must find new 
algorithms (especially for parallel computers that are 
available commercially), or to modify the conventional 
algorithms. As example, we present an algorithm 
Jacobi-type with the following pseudo-code [2]: 

For m:=1 , 2, … until convergence DO 
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It is obviously that that at the iteration number m 

when we must solve the model for T, the values for A 
are from the previous iteration, which is A(m-1). This 
particular aspect can be exploited in a parallel 
implementation of the algorithm. At a certain time 
moment the two equations systems (5) and (6) can be 
solved simultaneously so that they can be solved on 
different processors of a parallel computer. 

 
 
3.1 Case of low frequency 
We consider the low frequency case when the 

penetration depth of the magnetic field in workpiece is 
large [2]. As first target example we consider a long 
cylindrical workpiece excited by a close-coupled axial 
coil (see Fig. 1). The problem is an axisymmetric 
heating device (see the Fig. 2) with: 1- the workpiece, 
2 – the air, and 3 – the coil.  

The coil is assimilated with a massive conductor. In 
this case we can not ignore the eddy currents in the 
coil. We consider a low-frequency current in the coil 
so that the penetration depth is large. In this case we 
can decompose the whole domain of the field problem 
into overlapped subdomains for the two coupled-
fields.   

The domain for the magnetic field is shown in the 
Fig. 3, that is a quarter of the device bounded by a 
boundary at a finite distance from the device. For the 
thermal field we consider the workpiece as the 
analysis domain [7]. The penetration depth of the 
magnetic field in the workpiece imposes the 
overlapping domains for the two fields. The numerical 
model is considered in a cylindrical co-ordinates with 
the vertical axis Or and the horizontal axis Oz. 

The radiation plays an important role in induction 
heating at high temperature. Convection losses are 
small in through-heating, as the workpiece is 
contained in a shell that does not permit air movement. 
In the case the workpiece is in the open air, the 
convection losses are very important. 
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In Fig. 4 the temperatures versus time in two points 
are shown [9]. The curve 1 represents the temperature 
in the point (200,0) on the external workpiece surface. 
The curve 2 represnts the temperature in the point (0,0) 
from the center of the workpiece. The initial 

temperature was 40 0C. The workpiece is a steel 
cylinder and the coil material is copper. The current 
intensity is 30000 [A] and the time duration is 600 [s]. 
We considered natural convection at the external 
surface of the workpiece. The convection coefficient is 
50.  

 
 
3.2 Case of high frequency 
For many eddy-current problems the magnetic flux 

penetration into a conductor without internal sources 
of the magnetic field is confined mainly to surface 
layer. This is the skin effect. The skin depth δ depends 
on the material properties µ, ω and σ so that for the 
small depths all of the effects of the magnetic field is 
confined to a surface layer. The skin effect can be 
exploited in two directions [3]: 
• To reduce the space domain in analysis  with a 

fine mesh close to conductor surfaces 
• To reduce the material volume since a significant 

proportion of the conductor is virtually unused  
The penetration depth is given by the formula: 

  
ωσµ

δ
2

=    (7) 

The value of  δ changes during heating and becomes 
small at high frequency. In the last case the spatial 
domain for the magnetic field can be reduced. More, a 
part of the domain boundary varies in time so that at 
each time step a new mesh must be generated. A 
solution to avoid the regeneration of the mesh is to 
estimate the maximum value of δ from the bounds of 
the working frequency and to use a static boundary. In 
any case a substantial reduction of the spatial domain 
of the magnetic problem is reduced in comparison 
with the low working frequencies. The thermal field 
can be limited to the workpiece where the distributed 
heat sources are in a small layer.  
 

 
3.3 Efficient models 
The influence of the temperature on the material 
properties can be used in development of efficient 
programs in terms of the computing resources: 
memory and the execution time. Some relevant aspects 
in the design of the CAD software for coupled 
magneto-thermal problems are: 
• The thermal source in the heat equation can be 

defined by the time-mean of the ohmic power loss. 
The motivation is simple: the time constant of the 
magnetic phenomenon is small compared to the 
diffusion time of the heat transfer. 

• A cascade solution may be more efficient than a 
fully coupled model. In some applications there is 

 

Fig. 3 – The analysis domain 

 

Fig. 2 – The coil section 

Fig. 4 – The temperatures vs. space 
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a strict coupling between magnetic and thermal 
equation at each time instant, but in many 
situations we can do separate analyses of the 
magnetic field and the thermal field. 

• It can be used a predefined temperature profile of 
a material for updating the magnetic field at 
specified temperatures. For example, at Curie 
temperature the material properties change 
dramatically. After this critical point the magnetic 
field equation must be updated. 

• The analysis domain can be divided in more 
subdomains with different solvers for the coupled 
problems [8] 

 
In Fig. 6 the variations of some principal properties 

versus temperature are shown (by r we denoted the 
material resistivity) [7]. For example, the resistivity of 
the metals varies with the temperature by a law that we 
can approximate by a linear form: 

)](1[ 00 TTrr −+= α  

where r0 is the resistivity at a specified temperature 
(frequently the ambient temperature equal to 20 0C).  

From the curves presented in Fig. 6,  it is obviously 
that the magnetic field quantities must not updated at 
every time moment. In this way a cascade solution of 
the coupled problem is better than other approaches. 

 
 

4 Software products for coupled 

problems 
We limit the discussion to the software based on FEM.  
Any software product of type CAD has three distinct 
stages: 

• Pre-processing 
• Processing (solution) 
• Post-processing 
In Fig. 7 the conventional algorithmic skeleton 

for the coupled problems is shown.  Our interest is for 

the solution of the numerical model (processing stage) 
although in some previous works we presented our 
own software product for automatic mesh generation 
[1]. The multiblock method is adequate for parallel 
implementation in a high-performance software . 

Each stage of finite element method has an inherent 
parallelism so that a parallel program is the best 
approach for numerical algorithms based on FEM. 

There are many software products in the area of 
CAD based on FEM but there is room for 
improvement of these products.  An error estimator is 
a difficult task and the accuracy control of the 
numerical results is an open problem. There are some 
general strategies as h-method, p-method or hybrid 
method presented in professional literature. It is 
obviously that an adaptive mesh involves an increased 
computational effort because of the regeneration of the 
whole database for the program.  

 
 

5 Decomposition techniques 
An important measure of the algorithm and program 
performance is the number of operations and the 
execution time. Consequently we must invent new 
algorithms for the new architectures as parallel 
computers. Domain decomposition is one of the most 
efficient approaches for the parallel computers. In this 
approach the entire analysis domain is divided into 
several parts (subdomains) which can be disjoint or 
overlapped [8]. The subdomains are connected to each 
other by interface boundaries. 

The partition of the analysis domain is an open 
problem. There is no general rule for the domain 
decomposition and many experts in this area do 
decomposition in a somewhat random fashion. The 
problems and their solutions differ by the boundary 
conditions on the subdomain interfaces, the choice of 

Fig. 7– Block diagram for software CAD 

Fig. 6 – Material characteristics vs.  

temperature 
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the partition (disjoint or overlapped subdomains), if 
the decomposition is static or dynamic and the 
decomposition granularity. The solutions of these 
problems can influence with different weighted factors 
the whole performance of the algorithm, and finally, 
the program performance. 

In the FEM context, the requirements of 
partitioning should be: 
• Minimisation of the number of neighbours for 

each subdomain 
• Minimisation of the number of nodal values at 

interfaces between subdomains 
• Balancing the size of each subdomain that will 

have a direct consequence the balancing the 
computational load between different processors 

In the context of the FEM, the subdomains of a 
partition can be viewed as super-elements that are 
managed independently. In other words, each 
subdomain may have more elements. In assembly 
stage of finite element (FE) program, element matrices 
are generated for each element and assembled finally. 
At the level of the subdomain, the element matrices 
are assembled into a sub-matrice. All these sub-
matrices are to be assembled into the final matrices of 
the numerical model for the whole domain.  

Ideal numerical models are those that can be 
divided into independent tasks, each of which can be 
executed independently on a processor. Obviously, it 
is impossible to define totally independent tasks 
because the tasks are so inter-coupled that it is not 
known how to break them apart.  

In coupled problems from engineering, the partition 
of the whole analysis domain can be guided by 

physical considerations. More, some aspects of the 
partition, as the dynamics of the pseudo-boundaries 
(the boundaries between subdomains), can be 
imposed.  

In magneto-thermal problems we must follow a 
special strategy imposed by physical phenomena from 
device. Thus, the domain decomposition must me 
applied with some particularities: 

• We can use a decomposition hierarchy 
• The interfaces are imposed by physical 

properties of the system components 
• The pseudo-boundaries have a dynamics that 

depends on the temperature, that is we have 
dynamic interfaces [3] 

We consider a decomposition of tree type with two 
levels [2]:  

• One at the level of the problem 
• The other at the level of the field 

In Fig. 8 the analysis domain for the 
electromagnetic problem is shown. Only a layer of the 
thick equal to penetration depth of the magnetic field 
is considered. The thermal field is computed in the 
workpiece, that is a part of the whole domain. In other 
words we decompose the coupled problem in two sub-
problems: an electromagnetic problem and a thermal 
problem, each of them with disjoint or overlapping 
spatial domains. This is the first level of 
decomposition and decomposition is guided by the 
different nature of the two fields that interact. 

At the next decomposition level, we decompose 
each field domain in two or more subdomains. The 
decomposition is guided both by the different physical 
properties of the materials, and the difference of the 
mathematical models. At this level of decomposition 
the Steklov-Poincaré operator can be associated with 
field problem [8]. This operator reduces the solution of 
the coupled subdomains to the solution of an equation 
involving only the interface values. One efficient and 
practical solution of elliptical partial differential 
equations is the dual Schur complement method. 

The second aspect mentioned above has an 
engineering motivation. The pseudo-boundaries are 
imposed by the material interfaces where some 
physical restrictions must be fulfilled. Thus, if the 
device is built from different materials, a pseudo-
boundary must be the interface of the materials. 

The third aspect of the decomposition is imposed 
by the effect of the temperature on the magnetic field 
penetration in conductor (see formula (7)). Concerning 
the target example, with a steel workpiece, at each 
time moment the temperature is modified and value of 
depth is changed. In other words we have dynamic 
interfaces at the first decomposition level. More, the 
two analysis domains are overlapped and the 

 

Fig. 8 – Analysis domain for  magnetic field  
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overlapping area varies in time. In other words for 
dynamic decomposition, the analysis domain Ω at the 
time t* is expressed as a union of n subdomains: 

∪
)*(

)*()*(
tn

i
tit Ω=Ω  

On each subdomain a related equation with initial 
and boundary conditions is defined. The difficulty of 
the dynamic decomposition consists in the fact that 
new domain decomposition must be performed at the 
next time step. 

An iteration-by-subdomain algorithm obtains the 
solution of the field problem. Let us consider a 
partition with 2 subdomains, that is Ω=Ω1 U Ω2. 
Denoting by ui the restriction of the unknown u (that 
can be A or T ) to Ωi, i=1,2, the original problem is 
equivalent to two similar problems with the original 
problem provided that the following transmission 
conditions are imposed on the interface [3]: 

)2()1( uFuF =  
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u
G
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∂

∂

∂

∂
=  

where F and G are known functions. 
In magnetic field problems we can use alternating 

Dirichlet-Neumann pseudoboundaries, that is, the 
functions F and G have the form F(u)=u  and G(u)= 
∂u/∂n. Here n is the unit normal on the interface 
directed from Ω1 to Ω2 . 

Let us consider the numerical solution of the 
general partial differential equation: 

fLu =  
where L is a differential operator and u(x,t) is a 

function that belongs to a specified functions space, 
and satisfies given boundary and initial conditions. We 
denote by C the boundary of the analysis domain and 
C12 the interface boundary. For simplicity we consider 
a Dirichlet condition on the boundary equal to a 
known value g. The iteration-by-subdomain algorithm 
assumes the following steps [2]: 

 For k=0,1, .. until convergence do 

  Lu1 
k+1

    =f in Ω1 

  u1
k+1
=g on C-C12 

  F(u1
k+1
)=F(u2

k
) on  C12 

  Lu2 
k+1

    =f in Ω2 

  u2
k+1
=g on C-C12 

  G(u2
k+1
)=G(u1

k+1
)  on  C12 

 end do 

 

 

7 Numerical results 
We present the  induction heating of tubes in a furnace 
with a coil with 8 windings connected in series [9]. 
The height of the workpiece is 5600 [mm]. In 

numerical simulation the eddy currents in the coil were 
considered. The analysis domain with the mesh is 
shown in Fig. 9. On the outer boundary a Dirichlet 
condition was imposed. The geometry and the 
physical properties are defined as follows: electric 
conductivity of the workpiece (steel) - 1.107 [S/m], 
specific heat - 200 [J/Kg.K], density - 7800 [Kg/m3], 
relative magnetic permeability is 500, and thermal 
conductivity – 100  [W/K.m]. 

The coil material is copper. The amplitude of the 
source current is 30000 [A] at a frequency of 10 000 
[Hz]. The mesh has 2300 nodes and was generated 
using the software Quickfield [9]. In Fig. 10 the final 
axial temperature on the external workpiece surface is 
plotted, starting from the centerline (axis Or in our 
case).  

Fig. 9 -  Meshed domain of the furnace   

Fig. 10  - Final temperature  of  workpiece 
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The non-uniformity of the axial distribution of the 
surface temperature is a consequence of the non-
uniformity of coil heating at high-density currents.  

The temperatures differ on the internal and outer 
surfaces of the workpiece because the external surface 
is near the coil. In practice, a refractory material is put 
in the gap between the coil and workpiece. More, in 
large power coils the windings conductors have 
internal channels for cooling with water. 
 

7 Conclusions 
The problem of coupled fields in electromagnetic 
devices is a complex problem so that an analytical 
solution is impossible. The numerical simulation is the 
single approach for the analysis of the device. In this 
work we tried to present f some computational aspects 
in coupled magneto-thermal fields in the context of the 
finite element method. Although we limited the 
presentation from the programmer’s viewpoint of a 
conventional computer, the results can be extended to 
parallel computing. 

Our target example is of great importance for many 
industrial applications of the eddy-currents.  

Domain decomposition offers an efficient approach 
for large-scale problems or complex geometrical 
configurations. This method in the context of the finite 
element programs leads to a substantial reduction of 
the computing resources as the time of the processor.  

In coupled problems a hierarchy of decomposition 
was defined with a substantial reduction of the 
computation complexity. Each level of decomposition 
has its own advantages generated by the large number 
of conventional algorithms for each field problem.  

Although we limited the presentation to the domain 
decomposition considering physical properties of the 
field problem, the partitioning of the domain can be 
performed according to the mathematical models of 
the field problem (operator decomposition). There are 
different partial differential equations in different 
subregions of the electromagnetic device. For 
example, in the electromagnetic system the 
mathematical model can be an elliptic or parabolic 
equation, that is, we have an elliptic-parabolic 
problem.  

For time-dependent partial differential equations 
the decomposition of the spatial domain is an 
evolutionary process. The dynamic interfaces increase 
the algorithm and program complexity. An 

approximation of the dynamic decomposition by a 
static decomposition is possible for a known range of 
the source frequencies. 
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