
CORBA technologies for railway site reservation and passenger information

Petre Băzăvan
University of Craiova, Romania,

SC Silogic SRL, Romania
email : bazavan@yahoo.com

Abstract

This paper aims to describe the suitability of CORBA
(Common Object Request Broker Architecture, [1]) as a
management middleware [2] for a railway communications
systems. We present a CORBA solution for passenger infor-
mation and site reservation.

1. Introduction

Research and simulations presented in this paper was
supported by SC Silogic Romania [3] as part of the Euro-
pean Project TrainCom - Integrated Communication System
for Intelligent Train Applications (Contract No. IST - 1999-
20096) [4].

The intention of TrainCom project was to develop com-
munication system for telematic applications in the railway
field integrating on-board networks, GSM radio links and
Internet technologies. The TrainCom project proposes a
communication infrastructure integrating Internet and GSM
radio communication technologies, Train Communication
Network (TCN) (on-board network) with client-server type
technologies. The infrastructure includes the Railway Open
Ground Station (ROGS), several networks and on-board
interface (Railway Open GATEway - ROGATE) between
TCN and the Internet word. Based on this system the
project develops applications related to the fields of dy-
namic passenger information and locomotive interoperabil-
ity. The infrastructure is intended to became the standard
platform on top of which a number of applications can be
built overcoming border line problems and equipment het-
erogeneity [5].

Middleware is a computer software defined as a layer
above the operating system but below the application pro-
gram that provides a common programming abstraction
across a distributed system [2]. It is designed to mask the
complexity and heterogeneity inherent in distributed sys-
tems.

CORBA is one of the most used middlewares. Other

Figure 1. TrainCom Communication Infras-
tructure

known technologies are Java RMI/Enterprise Java Beans
(only for Java users) [6], [7] and Microsoft’s DCOM (only
on Microsoft’s Windows Operating Systems) [8]. All three
technologies support the development of object-based dis-
tributed applications. The CORBA characteristics (hetero-
geneity, location transparency, dynamic configuration, etc.)
are appealing in many application domain such as embed-
ded real-time data, telecommunications, aerospace, ground
vehicle control and automation systems. Services can be
written in many different languages and executed on many
different platforms. Now, CORBA utilization is in decrease
because the price is very expensive but CORBA is ideally
to ensure that applications written now will be accessible in
the future.

As Part of the TrainCom approach, the SILOGIC solu-
tion for railway passengers information and sites reserva-
tion is structured around the CORBA technology [9].

In order to make clear our explanation we shortly present
the principals CORBA concepts.

CORBA is a standards-based distributed computing

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 145

model for object-oriented applications developed by the
Object Management Group (OMG) [10]. Finding the
CORBA objects, transmitting the method call and return-
ing any results are mediated using an Object Request Bro-
ker (ORB) which the application doesn’t have to know
about. The ORB allows objects to interact in a het-
erogeneous, distributed environment, independent of the
computer platforms on which the various objects reside.
CORBA-compliant applications typically comprise a client
and a server. The ORB manages the communications be-
tween client and server using the Internet Inter-ORB Proto-
col (IIOP), which is a protocol layer above TCP/IP. The ob-
jects in a distributed CORBA application can communicate
with the ORB through an interface written in the CORBA
Interface Definition Language (IDL). The CORBA IDL is
a language included in the CORBA 2.0 specification that is
designed to describe the interfaces of objects, including the
operations that may be performed on the objects and the pa-
rameters of those operations. Clients need only know an ob-
ject’s interface in order to make requests. Servers respond
to requests made on those interfaces, and clients do not need
to know the actual details of the server’s implementation.

The next two sections will show how CORBA can be
used to manage resources in railway communication sys-
tems.

2. The Architecture of TrainCom CORBA
Model

According with the normative framework in railway
field, proposed by TrainCom project [4], our TrainCom
CORBA Model (TCCM) offers remote access to on-board
equipment and integrates technologies such as:

- on-board TCN - is the local train network;
- higher level protocols (e.g. TCP-IP, IIOP) and lan-

guages of Internet (XML, JAVA);
- on-board interface ROGATE between TCN and the In-

ternet world (is the radio-link based on GSM);
- the ground infrastructure (e.g. communications and ap-

plications servers to support the needed communication and
applications services).

Our aim is to be as operating system independent as
possible, in order to be flexible enough for possible up-
coming changes. A possible solution that could fit within
these limits is the 3-tier CORBA server-client architecture
where CORBA server would be querying local databases
and sends results to CORBA clients. The client in turn
would have to combine the results and, if is necessary, can
propagates the information at the on-board network level.

The principals TrainCom CORBA-based standard enti-
ties, the server and the client, are developed in Java lan-
guage and, consequently, our model is OS-independent. We

Figure 2. TrainCom CORBA Architecture

use a portable object adapter (POA) to communicate be-
tween ORB and the object implementation and CORBA’s
name service to get the object references.

Our specification addresses:
- a CORBA-based Intelligent Network (e.g. network

data changes between CORBA-based entities);
- interworking between CORBA-client entity and the on-

board network infrastructure (e.g. TCN).
The server side of TCCM is the Railway Open Ground

Station Server (ROGSS) and is hosted in a computer placed
on GROUND station.

There are three client applications in our model:
- TrainCom Manager (TCM) runs in a same computer as

ROGSS or in the same private network as ROGSS;
- TrainCom Client (TCC) is hosted in a computer placed

in a Railway Station or in a Travel Agency;
- The on-board structure includes ROGATE interface and

the local train network (e.g. TCN). ROGATE links ROGSS
with this network through a GSM radio link using Internet
protocols. A mechanisms for IP-addressing, GSM number-
ing and train identification matching are used. For this on-
board structure, the client side of the TrainCom model is
the ROGATE Client (ROGATEC) that is hosted by the RO-
GATE computer.

In communication architecture of TCCM we distin-
guish a private network TrainCom Client-Server Network
(TCCSN) that links ROGSS with TCC, TCM and RO-
GATEC clients using Internet protocols. In addition, the
link ROGSS-ROGATEC uses a set of GSM wireless con-
nection.

The following table describes the protocol architecture
of TCCM communication. It uses the generic parts: IIOP,
TCP/UDP, IP, GSM, RS232C.

The following table describes the software architecture
for TCCM communication network.

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 146

Table 1. Protocol architecture of TCCM com-
munication

Layer 5 CORBA Server-Client Application, XML reports
Layer 4 TCP/UDP, IIOP
Layer 3 IP
Layer 2 GSM-RS232C, Internet
Layer 1 TCN

Table 2. Software architecture for TCCM
CORBA Server-Client Application, XML reports

Compiler: JDK
Relational Data Base

UDP,
IIOP Communication: VisiBroker [11]

IP OS: Windows NT/2003/XP or Unix/Linux
TCN OS: Embedded Windows NT or Unix/Linux

3. Software Design

Two scenarios are implemented in TCCM.
The first scenario is from producer-consumer pattern and

regards the sites reservation and the management of base
information. It is a typical unidirectional CORBA commu-
nication between client and server. This implies that when-
ever TCM or TCC client is interested it can invoke a method
on an object of ROGSS.

The second scenario is a publisher-subscriber communi-
cation model [12] and regards the passengers information
activity witch implies that ROGATEC client must be noti-
fied of recent events occurring at the ROGSS side.

In the both cases TCCM offers interfaces which are
CORBA-IDL based API. These interfaces use a CORBA
ORB to provide necessary middleware services then, on
ROGSS side we have CORBA objects that implement these
services.

The first scenario uses the interfaces MainTrainCom,
SeatTrainCom, InfoTrainCom and a set of CORBA ex-
ceptions. The CORBA interface MainTrainCom provides
services for manage the base informations that are trains
routes, type and structure of cars, tariffs, etc. These services
are used by the client application TCM. The CORBA inter-
face SeatTrainCom provides services for sites reservation.
TCC is a dedicated client application which uses these ser-
vices. Information services are provided by the CORBA in-
terface InfoTrainCom and are used by TCM, TCC and RO-
GATEC applications. Various report type informations are
generated by these applications. In diagram (3) we present
the three interfaces and same methods of SeatTrainCom and
InfoTrainCom interfaces.

Each method can throws minimum a CORBA excep-

Figure 3. TrainCom CORBA Interfaces

tion presented in the diagram. At implementation level,
CORBA objects use others non CORBA objects. In case
of SeatTrainComImpl CORBA object, same relations with
non CORBA objects are represented in the next diagram.

Figure 4. SeatTrainCom Implmentation

Each one of TCM, TCC and ROGATEC client applica-
tions uses an object WorkWithServer which has the role to
call the methods of CORBA objects on ROGSS side. The
call mechanism is presented in Figure (5).

For the second scenario a discussion is necessary. When-
ever a remote CORBA object changes its state, an event is
generated. The same event should get propagated or noti-
fied to all the clients connected to the CORBA server and
interested on the remote object. OMG has proposed a stan-
dard set of rules and IDLs for realizing event notification
[13]. In an other approach, the client periodically invokes
a method on remote CORBA object and analyzes the return
value to determine whether the remote object has changed

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 147

Figure 5. Call TrainCom CORBA method

its state. There are many pros-cons discussions for these
solutions.

The first solution is very safe and robust but a separate
event server application is necessary that is more expensive
to maintain. The communication is little slower and the so-
lution will cause a resource crunch if many clients connect
to the same server because for each client there is a thread
blocking in server process.

The second solution is easy to implement but increases
the network traffic and the real time event notification is not
achieved. In our approach, the on-board passengers infor-
mation about seats reservation and information about linked
routes on destination station are not necessary real-time sen-
sitive and then we have adopted the second solution.

We use a periodic call of remote methods ”occupied-
Places” and ”prepareRouteData” (diagram of Figure 3).
The call mechanism is the same as in Figure (5). The
returned information is propagated at TCN level by non
CORBA methods.

4. Testing the prototype of CORBA TrainCom
Communication Architecture

AS we have presented (Sec. 2, 3), TCCM has a 3-tier
architecture. The application has a user interface code layer
(an example is in Figure 6), a logic layer, and a Data Base
access layer. All interactions between the first two layers
occur via the interfaces that all CORBA objects must pub-
lish.

The TrainCom Data Base (TCDB) access layer is made
up of objects that encapsulate Data Base routines and inter-
act directly with a Data Base server. TCDB is placed on the
ground station on the same machine as ROGSS or in a same
local network.

The server ROGSS, or logic layer, is server-based code
with which the client code interacts via ORB services. The
ROGSS is made up of CORBA objects that perform logical

functions. These objects invoke methods on Data Base Ac-
cess layer. The computer, which hosts ROGSS, is placed in
the ground station, ROGS.

The user interface layer is the client side and can reside
on the user’s desktop, on Intranet, or on the World Wide
Web (Internet). The GUI implementation is deployed with
access to the same server, ROGSS. The GUI usually invokes
methods on the logic layer and thus acts as a client of the
logic server. The three types clients (see Sec. 2) have dif-
ferent tasks but all access the same Data Base, i.e. TCDB
(layer 1) placed on the ground station, ROGS. The access is
synchronized.

The test application is composed of three different sub-
systems:

- SYS1: The local network simulating the ground station
ROGS is composed of two computers, the ROGSS and the
TCM computer;

-SYS2: The TCC clients is placed in Internet;
- SYS3: The ROGATEC computer and the associated

local (TCN) network simulate the on-board network.
The communication test procedure consists in several

phases:
1. Test of UDP communication in Intranet (SYS1:

ROGSS-TCM link) and Internet (ROGSS-TCC link);
2. Test of UDP communication (GSM link between

ROGSS and ROGATEC);
3. CORBA technologies communication in Intranet

(ROGSS-TCM link) and Internet (ROGSS-SYS2 link). We
use the Dial-Up connection for the ROGSS-SYS2 commu-
nication;

4. CORBA communication with GSM link (ROGSS-
SYS3 link).

Here is the subsystems description.

4.1 The subsystems description

SYS1
Two computers simulate the ground station ROGS and

the associated local network. Each computer is a Windows
NT host and has the CORBA software installed. The two
computers simulate the server side of the TrainCom appli-
cation, i.e. ROGSS, and respectively the client TCM. Op-
tional, the ROGSS computer can host the TCM software.

The ROGSS computer has four IP address: 127.0.0.1 -
localhost // local feedback address (himself); 192.168.0.1
- device1 // on local station network; 10.0.0.1 - ROGSS
// example of IP address with GSM connection and
213.154.145.1 // example of IP address with Dial-Up con-
nection.

The TCM computer has two IP address: 127.0.0.1 - lo-
calhost // local feedback address (himself); 192.168.0.2 -
device2 // on local station network;

SYS2

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 148

SYS2 simulate a local network of TCC clients, that are
placed in a remote station. The two computer of SYS2 are
Windows NT hosts and have the CORBA software installed.
Each computer simulates the client TCC side of the Train-
Com application.

The first TCC is the local server and has three IP ad-
dress: 127.0.0.1 - localhost // local feedback address (him-
self); 192.168.0.1 - device1// on local station network;
213.233.97.104 - TCC // example of IP address with Dial-
Up connection.

The second TCC computer has two IP address: 127.0.0.1
- localhost // local feedback address (himself); 192.168.0.2
- device2 // on local station network.

SYS3
SYS3 simulate the on-board network (TCN). The RO-

GATEC computer has IP address: 10.0.0.2 - ROGATEC //
example of IP address with GSM connection; 192.168.0.1 -
device1 // the IP address for on-board network;

For the phases 1 and 2 of the communication test we
use our specific Java UDP client-server application based on
DatagramSockets. This application transfers a text file from
the server to the client. For the phases 3 and 4, which imply
a CORBA communication, the files containing IP address
must be completed on each machine.

For our GSM communication links we have used a GSM
Terminal, type TC 35, made by SIEMENS.

A GUI of TCC application where a seats reservation is
realized is presented in Figure (6) and in Figure (7) is pre-
sented an example of passengers information on TCN dis-
play.

Figure 6. TrainCom Seats Reservation

Figure 7. TrainCom Passenger Information

5. Conclusions and comparisons with related
works

This paper reports that CORBA technologies could be
used in railway communication systems. We have demon-
strated that CORBA is a management middleware easy to
use in this activity field. Until this moment we did not find
studies and experiments of CORBA technologies int the
railway field. But many papers present aspects of CORBA
use in other spheres of activity.

In [14] is described the suitability of CORBA as a man-
agement middleware in mobile communications systems.
Similar with our study an interworking between intelligent
networks is reported.

The paper [15] present a ”Composite Objects” approach
for integrating of CORBA with real-time requirements.

Alike in our paper, in [16] is proposed a web-based net-
work simulation framework to provide a flexible, extensible
and platform-independent environment that is suitable for
large-scale deployment.

One of our subjects, i.e event notifications from CORBA
server to a CORBA client, is presented in [17] but another
mode of treatment is used.

References

[1] OMG; THE COMMON OBJECT REQUEST BRO-
KER ARCHITECTURE AND SPECIFICATION, Ob-
ject Management Group, version 3.0, July 2002,
http://www.omg.org

[2] Encyclopedia of Distributed Computing, Kluwer Aca-
demic Press,2002

[3] SC SILOGIC SRL ROMANIA, http://www.silogic.ro

[4] TRAINCOM - INTEGRATED COMMUNICATION SYS-
TEM FOR INTELLIGENT TRAIN APPLICATIONS,
http://www.traincom.org

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 149

[5] TRAINCOM - PROJECT PRESENTATION,
http://www.traincom.org

[6] http://java.sun.com/products/jdk/rmi/

[7] THOMAS A., Enterprise Java Beans Technology -
Server Component Model for the Java Platform. White
Paper, Sun Microsystems

[8] http://www.microsoft.com/com/tech/DCOM.asp

[9] SIEGEL M., CORBA 3 Fundamentals and Program-
ming (second ed.), Wiley, 2000

[10] OBJECT MANAGEMENT GROUP,
http://www.omg.org

[11] BORLAND VISIBROKER,
http://www.borland.com/us/products/visibroker

[12] RAJKUMAR R., GAGLIARDI M., SHA L., The Real-
Time Publisher/Subscriber Inter-Process Communica-
tion Model for Distributed Real-Time Systems: De-
sign and Implementation, Proceedings of the 1995
IEEE Real-Time Technology and Applications Sym-
posium

[13] EVENT SERVICE SPECIFICATION VERSION 1.1,
OMG, March, 2001

[14] MUTLU U. AND EDWARDS R., CORBA in Mobile
Communications, Electronic Paper

[15] POLZE A. AND RICHLING J., Data Replication and
Weak Memory Consistency: Predictable CORBA In-
teractions with Composite Objects

[16] CHOLKAR A., A Web-based Distributed Network
Simulation Framework using CORBA IDL-based
APIs, Electronic Paper

[17] JAGASIA M., NARAYANAN A. K., Realizing CORBA
Client-Server Event notification using Threads and
Synchronisation, Techniche’ 2003

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 150

	Text4:

