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Abstract: - Time-frequency analysis has been found to be effective in monitoring the transient or time-varying 
characteristics of machinery vibration signals, and therefore its use in machine condition monitoring is increasing. 
This paper proposes the application of time-frequency methods, which can provide more information about a signal 
in time and in frequency and gives a better representation of the signal than the conventional methods in machinery 
diagnosis. In this paper, we review the machine diagnosis techniques based on the verification of classical vibration 
parameters. Then the necessity of using time-frequency analysis in machinery diagnostics is discussed. Finally, the 
theory of the Short-Time Fourier Transform, the Wigner-Ville distribution and the Wavelet transforms are briefly 
studied and their advantages are shown by some practical examples. 
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1. Introduction  
In recent years, the objective of diagnostic of machine 
by vibration analysis has been considerably changed. 
The initial objective was the security of machine 
against the important damages. If the vibration 
amplitude (displacement, velocity or acceleration) 
reaches to the limit value, the alarm rings and the 
machine stops. This type of maintenance is called 
preventive maintenance. But to day, our objective is 
not only to protect the machine but also to detect and 
identify defaults in the first step in order to have the 
necessary time to schedule repairs with minimum 
disruption to operations and production [1]. This new 
type of maintenance is called predictive maintenance. 
The key factor of the predictive maintenance is 
diagnostic. A diagnosis is not an assumption; it is a 
conclusion reached after a logical evaluation of the 
observed symptoms. Then, the diagnostic is based on 
a systematic inspection in vibration signal to find all 
susceptible defects, which may affect the machine. 
There are several conventional methods, which have 
been applied for a long time to fault detection and 
identification. Some of these methods provide a 
representation of signals in time domain and others 
provide a representation in frequency domain [2]. 
For example, overall level measurement is the most 
common vibration measurement in use in time 
domain. It is a simple and inexpensive type of 
measurement to undertake. There are charts available 
which indicate the levels deemed acceptable, for 

example VDI 2056. The greatest limitation is the lack 
of sensitivity and information available in the data. 
Great many indicators have been also developed for 
machine condition monitoring and fault detection, 
such as crest factor and Kurtosis. The crest factor is 
the ratio of the peak on the RMS signal, where the 
RMS signal is defined by the following: 

(t)dtx    
T
1  =X 2

T

0
rms ∫   (1) 

Fig. 1 shows an example of crest factor severity 
chart that can be applied to bearings from class 2 
operating at 1800 rpm [3]. 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1: Crest factor for class 2 bearings 

 
The Kurtosis is defined as the 4th order moment of 
the time signal distribution: 
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where  yk  is the sampled signal for k = 1 to N, et Ym is 
the mean signal. 
The severity of damage, using the Kurtosis, can be 
categorized as the following criteria:  
 

Kurtosis Severity 
2.8 à 3.2 Good 
3.2 à 4 Fair 
> 4 Critical 

 
If the decision criteria based on the time analysis 
allows for diagnosing a default, they don't allow for 
identifying its cause. In addition, we need to take into 
consideration not only the increase in the power of the 
signal, but also the development of its form and a 
spectral analysis is needed. 
An alternative techniques have been also applied to 
verifying the variation in the form of a signal such as 
Cepstrum and the envelop method (Hilbert transform) 
of the narrow band of the signal. Cepstrum is the 
inverse Fourier transform of the logarithmic spectrum 
of the signal: 

)))(X(log(TF))t(x(C 1 ω−=   (3) 
Cepstrum allows for detecting repetitive impacts in the 
time domain by identifying the impact period. 
In all of these methods, it is assumed that signal is 
stationary but this assumption is not always true. In 
some cases, when defects begin, vibration signal 
becomes non-stationary and in this case, the 
conventional methods (FFT) are not applicable. On 
the other hand, there are presently several types of 
variable speed rotating machinery for which the 
stationary or pseudo-stationary vibration signals 
cannot be assumed. In recent years, a number of new 
analysis methods have been developed in the field of 
signal processing called joint time-frequency analysis 
methods. The time-frequency analysis not only enables 
us to represent the signal in three dimensions (time-
frequency-amplitude) but also permit us to detect and 
follow the development of the defects, which generate 
weak vibration power. A weak vibration power can 
modify the form of the signal to a considerable extent, 
as happens when defects produce the amplitude 
modulation or frequency modulation of certain 
characteristic components for examples the journal 
bearing of a shaft with a slow or very slow rotational 
velocity, a rotating oven, dryer cylinders, the press 
sections of a paper machine, etc.; 

2. Time frequency analysis  
The primary objective of all research into signal 
processing is to find an efficient method, which would 
generate results rapidly and clearly, and in a manner 
which could be relatively easily interpreted. Using the 
time-frequency representation of the signal energy is 
one of the attempts to show a signal in three 
dimensions and obtain clear interpretation. 
 
2.1 Short-Time Fourier Transform  
The short-time Fourier transform (STFT) was the first 
time-frequency method, which was applied  by Gabor 
[4] in 1946 to speech communication. The STFT may 
be considered as a method that breaks down the non-
stationary signal into many small segments, which can 
be assumed to be locally stationary, and applies the 
conventional FFT to these segments. 
The STFT of a signal )(τts  is achieved by 
multiplying the signal by a window function, )(τh , 
centered at τ, to produce a modified signal. Since the 
modified signal emphasises the signal around time τ, 
Fourier Transforms will reflect the distribution of 
frequency around that time. 

τττ
π
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2
1)(S j
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The energy density spectrum at time τ may be written 
as follows: 
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For each different time, we get a different spectrum 
and the ensemble of these spectra provides the time-
frequency distribution ),( ωtP , which is called 
Spectrogram. 
The major disadvantage of the STFT is the resolution 
tradeoff between time and frequency. Resolutions in 
time and frequency will be determined by the width of 
window )(τh . A large window width provides good 
resolution in the frequency domain, but poor 
resolution in the time domain. Conversely, a small 
window width provides good resolution in the time 
domain and poor resolution in the frequency domain, 
following the Heisenberg principle. This limitation of 
the STFT is arising from using a single window for all 
frequencies and therefore, the resolution of analysis is 
the same at all locations in the time-frequency plane 
(Fig. 2-a). 
 
2.2 Wavelet Transforms 
The wavelet transform is another linear time-
frequency representation, similar to the spectrogram 
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but with more flexibility in time and frequency 
resolution. In the STFT, the length of window 
function will remain constant during the analysis of 
the signal. In the wavelet transform, by translation and 
dilation / contraction of a window function called the 
mother wavelet function, we build up a family of 
window functions of variable lengths:  

⎟
⎠
⎞

⎜
⎝
⎛ −

=
s

t
s

1)t(s

τψψ τ    (6) 

where )t(ψ , s and τ  are respectively a mother 
wavelet function, the scale of wavelet transform, and 
time shift. The wavelet transform is defined as 

∫
∞

∞−

= dt)t()t(x),s(xW sτψ ψτ   (7) 

where ),( τψ sxW  are called wavelet coefficients. 
The variable window length property of the wavelet 
transform gives us the possibility of having the time 
and frequency resolutions dependent on the frequency 
under consideration. Fig. 2 illustrates this point by 
showing the cells of resolution in the time-frequency 
plane for the STFT and the wavelet transform.  
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Fig. 2: Time-frequency plane of (a) the STFT (b) the 

wavelet transform 
 
One important advantage of the wavelet transform is 
its ability to carry out local analysis. This property is 
of significant value in revealing any small change in 
the signal and distinguishes the wavelet transform 
from other signal analysis techniques. If we consider 
the result obtained by applying the wavelet transform 
on a Dirac pulse at time 1.00 =t sec (Fig. 3), we see a 
triangular shape, which points at 0tt = in the time-
frequency plane. An impulse excites all the 
frequencies. Fig. 3 shows that the signal is more 
localized in high frequencies than in low frequencies. 
The variable time and frequency resolution of the 
wavelet transform is one of its advantages; however, 
in the discrete wavelet transform, the frequency axis 
has logarithmic scale (octave). The octave scale of the 
frequency axis does not permit either fine frequency 
resolution of the high frequencies. This characteristic 

of the frequency axis in the wavelet transform makes 
it a specialized method to be used for signals, which 
contain long-duration events at the low frequencies 
and short-duration events at the high frequencies. The 
octave scale of the frequency axis in the wavelet 
transform may at times be considered to be a 
disadvantage of this method. 

 
Fig. 3: wavelet transform of a Dirac function 

 
To resolve the inconvenience of the wavelet 
transform, another method based on the principle of 
the wavelet transform has been introduced. This 
method is called the wavelet packet transform, and 
gives a frequency axis with linear scale at the expense 
of losing the excellent time resolution of the high 
frequencies of the wavelet transform.  
 
2.3 Wigner-Ville Distribution and Cohen’s 
Class Time-Frequency Distributions 
One interesting time-frequency energy distribution is 
the Wigner-Ville distribution (WVD) [5], which has 
recently been applied to the field of mechanical signal 
analysis. This distribution is a bilinear function, in 
contrast to the transforms discussed above, which are 
linear transforms.   In a linear transform, the similarity 
of the signal to a window function is measured using 
the correlation function; on the other hand, the 
Wigner-Ville distribution is the Fourier transform of 
the instantaneous auto-correlation of the signal. Thus, 
its time-frequency representation is independent of the 
window function. 
If the instantaneous correlation, )t,(R 0x τ , at time 0t  
with a time lag τ , is defined as  

 

∫
+

∞→

+−=
τ

τττ
0

0

t

tT
0x dt )2/t(x )2/t(x

T
1)t,(R lim     (8) 

its Fourier transform may be written as follows: 
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The WVD satisfies a large number of desirable 
mathematical criteria and has excellent resolution in 
the time and frequency domains, but it has two major 
problems. First, it is not always non-negative, which, 
since energy is always positive, makes it difficult to 
interpret the Wigner-Ville representation as the energy 
distribution of the signal in the time-frequency plane. 
Secondly, because it is bilinear, it produces 
interference terms or cross terms for multi-component 
signals [6]. The interference term is located between 
two components of a multi-component signal in the 
time-frequency representation, and it oscillates with a 
frequency proportional to the distance between these 
two components. 
In numerical method, we cannot use a signal from -∞ 
to +∞, and therefore we use a window function to cut 
the signal in the time domain. This time-window 
version of the WVD is called the pseudo-WVD [5]. 
Windowing in the time domain provides some 
smoothing in the frequency direction of the WVD and 
reduces the interference terms oscillating 
perpendicularly to the frequency axis, but at the 
expense of loosing many properties of the WVD. In 
addition to the interference terms, the alias problem 
may affect the discretization of WVD if the signal is 
real-valued and sampled at the Nyquist rate. To 
prevent this problem, Ville [7] suggested using the 
analytical signal, a complex signal in which the 
imaginary part is equal to the Hilbert transform of the 
real part. With the analytical signal, the spectral 
domain will be [0, ½] of the real signal and 
consequently the aliasing will not happen. On the 
other hand, since the spectral domain is divided by 
two, the number of components in the time-frequency 
plane is also reduced by half. In addition, application 
of the analytical signal eliminates the negative part of 
the frequency axis, so that the interference terms 
generated between negative and positive frequency 
components are eliminated, leading to a considerable 
decrease in the number of interference terms. 
Since the development of the WVD, there have been 
several attempts to find other formulas to express the 
energy of the signal in the time-frequency plane. Cohen 
classified these formulas by giving a general formula 
for all time-frequency energy distributions. This 
formula is defined as:  

∫∫∫ −−−+= θττθϕττω τωθθ d d due ),( )2/u(x )2/u(x),t(WD )tu(i
x     (10) 

where τθ  and  are respectively a frequency lag and a 
time lag. In addition, ),( τθϕ  is a kernel function that, 

when changed, gives different time-frequency 
distributions with different properties. 
One desirable choice for the kernel function is a 
separable smoothing function in both the time and 
frequency domains which attenuates the interference 
terms of the WVD in both the frequency and time 
directions. The distribution attained in this way  is 
called the smoothed-WVD, and is defined as: 

ξξωΦξω d du ) ,ut( ),u(WVD),t(SWVD xx ∫∫ −−=  (11) 

where ),( ωtΦ  is a two dimensional smoothing 
function. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 4: STFT and smoothed Wigner-Ville 
distribution of two parallel chirps 

The smoothed-WVD may be considered as an 
intermediate distribution between the STFT and the 
WVD. It has some of their advantages and none of 
their problems. The WVD provides the best resolution 
in time and in frequency, but produces some 
significant interference terms in the time and in 
frequency directions. The STFT is a linear transform 
and does not suffer from interference terms, but it is 
unable to give satisfactory resolution simultaneously 
in time and in frequency.  The smoothed-WVD 
provides the best compromise between these two 
problems: interference terms and resolution in time 
and frequency. Fig. 4 shows the STFT and the 
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smoothed Wigner-Ville distribution of two parallel 
chirps. This figure shows that the smoothed-WVD 
provides better resolution and clearer representation of 
the signal than the STFT.  
 
 
3. Software for time-frequency 
analysis 
Today, one of the most important factors limiting the 
progress of machine diagnostic techniques is the lack 
of familiarity of mechanical engineers with new signal 
processing methods. The complicated theory of time-
frequency analysis and the absence of operational 
software for time-frequency analysis restrict engineers 
from using these methods in machine diagnosis. An 
in-house user-friendly software has been developed in 
collaboration with International Measurement 
Solutions (IMS) company to facilitate the use of time-
frequency methods by engineers whether or not they 
are familiar with time-frequency analysis [11]. This 
software permits the use of different methods of time-
frequency analysis such as the Short-Time Fourier 
Transform, the Wigner-Ville Distributions, and the 
Wavelet Transforms. The program allows the user to 
carry out different distributions of Cohen’s class of 
time-frequency methods such as the Choi-Williams 
Distribution and the Born-Jordan-Cohen Distribution. 
In addition, it provides different kinds of wavelet 
transforms, for example: the wavelet transform, the 
wavelet packet transform and the adaptive wavelet 
transform. In addition, a new technique of “zoom in 
wavelet transform” makes possible to obtain very 
satisfactory frequency resolution. This program has 
been developed especially for the diagnosis of defects 
in machinery, and includes most of the commonly 
used methods of time-frequency analysis. The 
program has  
In addition, it provides different kinds of wavelet 
transforms, for example: the wavelet transform, 
the wavelet packet transform and the adaptive 
wavelet transform. In addition, a new technique 
of “zoom in wavelet transform” makes possible to 
obtain very satisfactory frequency resolution. 
This program has been developed especially for 
the diagnosis of defects in machinery, and 
includes most of the commonly used methods of 
time-frequency analysis. The program has some 
interesting options, which are of considerable 
practical value in such cases. For example, 
denoising by wavelet transform, which is an 
important tool in the analysis of noisy signals, 

allows the user to obtain an improved time-
frequency representation. 
 
 
4. Industrial application of the time-
frequency algorithm  
In this section, the efficiency of the time-frequency 
methods in an industrial case is demonstrated. This 
case comes from the defective gear-train of a hoist 
drum in a large shovel operating at an open-pit iron 
mine. The data are measured by IMS company in 
order to diagnose the problem in the machine. 
A minimum length of time is required to perform FFT 
analysis of each process. The time resolution required 
will depend on the period of each tooth mesh and the 
desired level of accuracy. Sometimes, it is not possible 
to measure the signal for long enough to provide the 
periodicity of shock in the FFT spectrum. In this 
particular case, the process did not even last one 
revolution of the driven gear.  The case was 
investigated by time-frequency distribution precisely 
because it is known that time-frequency methods do 
not need as much time signal as the FFT spectrum. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5 Wavelet transform of defective gearbox 

signal. 
The wavelet transform of the signal (Fig. 5) shows the 
three repetitive pulses in the frequency band 320-640 
Hz. The frequency resolution is too poor for clearly 
identifying the gear mesh frequency. The frequency of 
the periodicity of the signal may be calculated from 
the wavelet transform more precisely than from the 
STFT, because the time resolution in this band of the 
wavelet transform is finer than in the STFT. But in the 
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three-dimensional representation of the signal, the 
STFT provides better representation than does the 
mean square wavelet. 
The wavelet packet transform (Fig. 6) provides not 
only better frequency resolution, but also better time-
frequency representation (three-dimensional) than 
does the wavelet transform. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Wavelet packet transform of defective 
gearbox signal. 

 
 
5. Conclusion  
It has been shown that, although the majority of 
conventional methods may give good results when 
detecting a single fault in various simple elements of 
machines, no single technique can provide all the 
answers for all cases. It is difficult to decide which 
method gives the best result, in particular when the 
precise type of fault is not known. Time-frequency 
analysis provides a means to accurately identify the 
changing frequencies that occur with degradation; 
these spectral changes in turn reflect the state of the 
process. In this paper, a number of time-frequency 
methods that can be used to analyze non-stationary 
and time-varying signals have been described. The 
advantages and disadvantages of each method of time-
frequency analysis have been discussed, and the 
benefits to be obtained from the application of these 
techniques in the monitoring and fault-detection of 
machinery have been highlighted. An in-house user-

friendly time-frequency software has been introduced 
in this work. This software has been developed by 
authors in collaboration with IMS to analyze of non 
stationary signals which may come from machine. 
Finally, the advantages of the time-frequency methods 
have been demonstrated by using these methods on 
vibration signals from an industrial gearbox. The 
application on gear box has shown that the smoothed 
Wigner-Ville distribution, Short-Time Fourier 
transform and Wavelet packet transform were the best 
methods for diagnosing and locating a broken tooth in 
the analyzed case.  
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